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Abstract

Keywords – Music Information Retrieval, Symbolic Music, Natural Language Processing,
Machine Learning.

Music is often described as a language because of its similarities to natural language. These
include their respective representations through symbolic music notation and textual form.
Therefore, the field of Music Information Retrieval (MIR) has often borrowed several tools
from the Natural Language Processing (NLP) field to adapt them to process symbolic music
data. In particular, this phenomenon has been increasingly popular with the breakthrough of
Transformer models in the NLP field.

This thesis first provides a structured overview of adaptations of NLP methods developed in
the MIR field for symbolic music processing. They are presented along three axes, each address-
ing the use of diverse representations of symbolic music at different levels. Symbolic music
represented as sequential data has lead to the development of several tokenization strategies,
which we propose to organize within a unified taxonomy. These representations are subse-
quently processed through models, such as recurrent or attention-based architectures initially
developed for text data, giving rise to multiple adaptations for symbolic music processing.
Finally, these abstract representations are used to perform tasks, where both parallels and
distinctive characteristics emerge between MIR and NLP.

These aspects then structure the three technical contributions of this thesis. First, we
study the expressiveness of sequential representations of music through the development of
interval-based tokenization strategies, and the analysis of a subword tokenization strategy,
Byte-Pair Encoding, applied to symbolic music tokens. We then propose a framework for model
explainability which leads to the analysis of the attention mechanism of a Transformer-based
model trained for functional harmony analysis. Finally, we develop a model adapted from NLP
tools for a task of re-orchestration, framed as a case of multi-track music generation.

Ultimately, this thesis defends that NLP methods first remains a toolbox from which MIR
studies can take inspiration from. Beyond the analogies between music and natural language,
the main motivation guiding a MIR study should remain musical questions.





Résumé

Mots-clés – Extraction automatique d’information musicale, Représentations symboliques de
la musique, Traitement automatique du langage naturel, Apprentissage automatique.

La musique est souvent comparée à un langage. Cette comparaison est notamment dûe
au fait que musique et langage naturel partagent de nombreuses similarités. Parmi celles-
ci figurent leurs représentations respectives à travers la notation musicale symbolique – ou
partition musicale – et la forme écrite textuelle du language. Ainsi, le domaine de la recherche
d’information musicale MIR a fréquemment emprunté des outils provenant du domaine du
Traitement automatique du langage naturel (TALN) afin de les adapter au traitement de données
musicales symboliques. Ce phénomène s’est particulièrement intensifié avec l’essor des modèles
de type Transformer dans le domaine du TALN.

Cette thèse propose tout d’abord une synthèse structurée des adaptations des méthodes de
TALN développées dans le champ du MIR pour le traitement de la musique symbolique. Elles
sont présentées selon trois axes, chacun portant sur l’utilisation de différentes représentations
de la musique symbolique à divers niveaux. La musique symbolique représentée comme des
données séquentielles a conduit au développement de plusieurs stratégies de tokenization, que
nous proposons d’organiser au sein d’une taxonomie unifiée. Ces représentations sont ensuite
traitées par des modèles, tels que les architectures basées sur des mécanismes de récurrence ou
d’attention. Celles-ci, initialement conçues pour les données textuelles, ont donné lieu à de
multiples adaptations pour le traitement de la musique symbolique. Enfin, ces représentations
abstraites sont utilisées pour accomplir des tâches, où émergent à la fois des parallèles et des
spécificités distinctives entre MIR et TALN.

Ces aspects structurent ensuite les trois contributions techniques de cette thèse. Dans un
premier temps, nous étudions l’expressivité des représentations séquentielles de la musique à
travers le développement de stratégies de tokenization basées sur les intervalles musicaux, ainsi
que l’analyse d’une stratégie de tokenization en sous-mots, le Byte-Pair Encoding, appliqué aux
tokens musicaux symboliques. Nous proposons ensuite un cadre pour l’explicabilité de modèles,
qui est utilisé pour l’analyse du mécanisme d’attention d’un modèle basé sur Transformeur,
entraîné sur une tâche d’analyse d’harmonie fonctionnelle. Enfin, nous développons un modèle
adapté des outils du TALN pour une tâche de ré-orchestration, considérée comme un cas de
génération automatique de musique multi-instrumentale.

Par ces contributions, cette thèse soutient que les méthodes de TALN restent avant tout
une boîte à outils dans laquelle le MIR peut s’inspirer. Malgré les analogies entre ces deux
domaines, la principale motivation guidant une étude en MIR devrait avant tout être d’ordre
musical.
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Chapter 1

Introduction

Natural language and music

Musical phrase, musical discourse, call and response. . . . Musicians, conductors, mu-
sicologists, and even simple music enthusiasts often use these terms to describe,
analyze, interpret music, or communicate with each other about music. Yet, these
terms originally come from the lexical field of natural language. The need for music
to borrow linguistic terms to describe itself is not accidental as it reflects a deep
connection between music and natural language.

Leonard Bernstein declared about this relationship between these two forms of
expression (Bernstein, 1976, p. 10):

Music is the Universal Language of Mankind. [. . . ] by building analogies
between musical and linguistic procedures, couldn’t that cliche about the
Universal Language be debunked or confirmed, or at least clarified?

(L. Bernstein, The Unanswered Question)

This relation is complex as they can share multiple similarities, – such as common
functions, structures, or perceptive phenomena – yet each also exhibits aspects that
the other lacks or for which there is no direct equivalent, such as polyphony in music
or semantics in language (Jackendoff, 2009). These similarities and specificities
between language and music will be further developed in Chapter 2.

This analogy between music and natural language, particularly symbolic music
and text, also manifests when considering computer science research. Recognizing
the many parallels between language and music, the Music Information Retrieval
(MIR) community has quickly taken advantage of the advances in Natural Language
Processing (NLP) to borrow and adapt their methods for computational music data
processing.

1



2 CHAPTER 1. INTRODUCTION

Natural language processing and symbolic music infor-
mation retrieval

Natural Language Processing (NLP) is a field at the crossroads between linguistics
and computer science that focuses on the interaction between computers and human
language. Its main purpose is to allow computers to deal with human languages while
taking into account their characteristics, such as syntactic or semantic properties
which are essential for language understanding, interpretation or generation. While
natural language can be depicted either under an oral format (i.e. speech) or a written
form (i.e. text), this thesis only studies language as text.

The field of Music Information Retrieval (MIR) combines musicology and com-
puter science to develop techniques for analyzing music or retrieving music-related
data. It has been extended in recent years to encompass techniques for music gen-
eration as well. While audio files encode music as sound, at a low representation
level such as waveforms or spectrograms (Müller, 2015), symbolic music consists in
abstract notations representing concepts such as notes, chords, or intervals, that
compose musical scores. In practice, symbolic music remains prevalent in digital
music production mainly relying on the MIDI format, which stands as an ubiquitous
standard within digital audio workstations (DAWs). The scope of this thesis is limited
to symbolic music representations.
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Figure 1.1: Evolution of the number of research articles containing NLP-related words.
(Left) Number of ISMIR papers with NLP-related words in their abstracts from 2000 to 2024.
(Right) Number of arXiv preprints returned by the API query “music AND <term>”.

To address tasks that sometimes overlap between text and symbolic music, as
well as their shared nature as sequential representations, the MIR community has
closely followed advances in NLP by adapting successful tools from this field. As
a result, a prominent amount of symbolic music generation or analysis approaches
have been adapted or inspired from NLP methods. Figure 1.1 describes the number
of publications from the International Society of Music Information Retrieval (ISMIR)
conference that include NLP-related terms in their abstract as well as music/NLP-
related arXiv preprints. The rise of Transformers (Vaswani et al., 2017) from 2017
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has largely contributed to increase these references and a large number of the NLP-
derived state-of-the-art models in symbolic MIR are now based on this model.

This trend has encouraged dedicated initiatives in the MIR community, such as the
organization of the workshop NLP for Music and Spoken Audio (NLP4MusA)1 held
between 2020 and 2024 or the new workshop LLM4A (Large Language Models for
Music & Audio)2 introduced in ISMIR 2025. In addition, more and more overviews
of deep learning approaches for music generation, including NLP-based methods,
are presented as tutorials or keynotes at conferences such as ISMIR3 or CMMR4.

In this thesis, we propose a taxonomy of existing NLP methods adapted to the
MIR field, structured into three main dimensions: sequential representations, models
and tasks. This overview enables the identification of potential areas for improvement
across these three axes of NLP applications in MIR– axes to which we contribute in
this thesis through targeted technical developments. While these technical contribu-
tions can result in marginal improvements when considered individually, this thesis
supports that NLP can serve as a source of inspiration for MIR research – not merely
as a collection of tools to be applied to symbolic music data, but as a framework that
must be initially driven by fundamental musical questions.

Thesis outline and contributions

Music
& Language

(Chapter
2)

Models

(Chapter
5)

Tasks

(Chapter
3)

Conclusio
n &

future dire
ctions

(Chapter
9)

Byte-Pair Encoding
and polyphony
(Section 6.2)

Interval-based
tokenization
(Section 6.1)

Inner mechanisms
of Transformers
(Chapter 7)Multi-track music

generation
(Chapter 8)

Part I: Overview of NLP methods for MIR

Part II: Technical contributions

Sequential

representations

(Chapter
4)

Figure 1.2: Thesis outline. The thesis is divided into two parts: an overview of NLP methods
for symbolic MIR (blue line) and technical contributions (red lines). Both parts follow a
common structure organized around sequential representations, models, and tasks.

1https://sites.google.com/view/nlp4musa-2024/home
2https://m-a-p.ai/LLM4Music/
3Tutorial at ISMIR 2023: Transformer-based Symbolic Music Generation
4Keynote at CMMR 2023: Deep Learning-based Automatic Music Generation: An Overview

https://sites.google.com/view/nlp4musa-2024/home
https://m-a-p.ai/LLM4Music/
https://ismir2023program.ismir.net/tutorials.html#T3
https://cmmr2023.gttm.jp/keynotes/#Yang_abst
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This thesis is organized following the structure presented in Figure 1.2. First,
Chapter 2 presents high-level similarities between language and music, in particular,
text and symbolic music, which partly motivate the use of NLP methods to process
symbolic music. They can share similar high-level characteristics such as their
purposes or induce cognitive reactions, but also similarities when seen as data such
as their sequential aspect. This proximity between text and music lead to practical
technical convergences when applied to NLP and MIR.

The manuscript then presents the various contributions of this thesis, organized
into two main parts: a structured survey of existing NLP methods for symbolic music
processing, and technical contributions that were achieved by adapting NLP methods
to symbolic music analysis and generation.

A structured overview of NLP methods for MIR

Part I is dedicated to an extensive overview of existing NLP methods adapted for
symbolic music information retrieval and symbolic music generation (Le et al.,
2025a). This overview is organized into three key axes:

• Starting from a musical perspective, Chapter 3 reviews the links between text
and symbolic music tasks. While text and music remain distinct types of
data, leading to in domain-specific tasks in NLP and MIR, these two fields
still share common analysis tasks (e.g. token classification tasks, sequence
classification tasks. . . ), as well as generative tasks (e.g. priming, infilling. . . ).
Such similarities between text and music tasks may contribute in motivating
the use of the following NLP methods in the MIR community.

• Chapter 4 reviews existing representations of symbolic music as sequences.
Tokenizing (i.e. representing data under a sequential format) music in the same
way as text is not straightforward due to numerous differences between them,
such as polyphony in music or the multiplicity of information contained in
a single musical note. Therefore, several tokenization strategies for symbolic
music have been developed for different purposes. We propose a taxonomy for
describing and classifying music tokenization strategies.

• Such sequential representations of music are often used as inputs of NLP-based
models presented in Chapter 5. These models started with shallow models
followed by recurrent networks. However, the rise of Transformers has led
to the prominence of this model in several MIR tasks. We also propose a
taxonomy describing these models through their technical aspects such as their
architecture, training paradigm or music-specific mechanisms.



CHAPTER 1. INTRODUCTION 5

Technical contributions

Beyond this formal organization of the field, Part II presents technical contributions
inspired by NLP methods for symbolic music processing in each of these three axes.

• Two contributions on sequential representations of symbolic music are detailed
in Chapter 6. These contributions focus on improving the expressiveness of
music tokenization strategies. A first work analyses the impact of Byte-Pair
Encoding (BPE) on monophonic and polyphonic music in a task of musical
phrase detection (Le et al., 2024). A second work explores alternative musical
interval-based tokenization strategies in the context of multiple analysis
tasks (Le et al., 2025b).

• In Chapter 7, we study models through the lens of model explainability. In
particular, we analyze how the attention mechanism of an encoder-only model
behaves in a task of functional harmony analysis, in terms of attention span
and attention heads’ relevance. We quantify this relevance through Layer-wise
Relevance Propagation (LRP), which has been used for NLP models explain-
ability.

• Chapter 8 presents Meteor, a model for automatic multi-track music genera-
tion, as an application of NLP methods for a MIR task (Le and Yang, 2025). The
model performs a task of automatic re-orchestration with melodic fidelity and
textural controls. It is based on a variational auto-encoder with Transformer
blocks and implements token constraints for these controls.

This overview of NLP methods for symbolic music and these technical contri-
butions highlight potential limitations of NLP approaches in effectively adapting
for symbolic music processing. Chapter 9 discusses of such limits and suggests
future directions for how the MIR community can continue drawing inspirations
from NLP advances for future research. This directions include advances towards
lighter models, improved model explainability, and the development of benchmarks
for symbolic music research. We finally highlight the main takeaways of this work.

A summary of the works published and released during this thesis is provided in
the bibliography of this manuscript. Moreover, audio extracts corresponding to the
musical scores illustrated in the figures throughout the manuscript are available at
https://dinhviettoanle.gitlab.io/phd-thesis-companion.

https://dinhviettoanle.gitlab.io/phd-thesis-companion




Chapter 2

On parallelisms between music and
natural language

2.1 Music and language as communication means . . . . . . . . . . . . . . . . . 8
2.1.1 Functions of music and natural language . . . . . . . . . . . . . . . . 8
2.1.2 Cognitive responses to music and natural language . . . . . . . . . . 9

2.2 Symbolic music and text as structured data . . . . . . . . . . . . . . . . . . . 10
2.2.1 Hierarchical representations . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Musical and textual grammatical rules? . . . . . . . . . . . . . . . . . 13

Several works draw connections between music and language as evidenced by
book titles such as The Language of Music (Cooke, 1959), The Music between Us: Is Mu-
sic a Universal Language? (Higgins, 2012), Music and Discourse: Towards a Semiology
of Music (Nattiez, 1990). Indeed, parallels between music and natural language are
often drawn, as music is often considered as a linguistic system (Jackendoff, 2009).
These parallels occur in many dimensions such as their human usage as communica-
tion means (Section 2.1), but also, from a more objective viewpoint, as structured
types of data when considering text and symbolic music representations (Section 2.2).
These parallels are however most often nuanced by significant differences specific to
each domain.

All these high-level alignments between text and symbolic music likely motivated
the adaptation of NLP computational methods for symbolic music processing, as
described throughout this thesis. In this chapter, we propose to gather links between
music and language that might contribute to justify this influence.

7
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2.1 Music and language as communication means

Both music and natural language are specific to human species and are learned
through imitation. Both can be deployed under two modalities: an annotated form
(text, sheet music) and an auditory form (speech, musical performance) (Fornäs,
1997). However, both similarities and differences emerge when examining the
functions of music and natural language, as well as humans’ physiological responses
when exposed to both modalities.

2.1.1 Functions of music and natural language

Communication is a central function in language because it conveys ideas, thoughts,
concepts or propositions. In contrast, the question of defining functions of music has
been extensively studied and discussed (Jackendoff, 2009; Fornäs, 1997; Zbikowski,
2009). In music, communication is often considered only one of several functions
(Merriam and Merriam, 1964). This musical communication is often seen as serving
other purposes than conveying ideas: the concept of semantics, which is pivotal in
language, is missing or at least not essential to the appreciation of music. A popular
maxim states (Eckstein and Reinfandt, 2006):

Writing about music is like dancing about architecture.

Music may not carry any literal meaning, or at least that cannot be compared
to linguistic meaning (Lerdahl and Jackendoff, 1996). Bernstein declared on this
topic (Bernstein, 1959, p. 33):

Music, of all the arts, stands in a special region, unlit by any star but its own,
and utterly without meaning [. . . ] except its own, a meaning in musical terms,
not in terms of words.

Music is instead more associated with affect and serves as an emotional expression
based on aesthetics (Jackendoff, 2009). Beyond being provoked by music, this emo-
tional characteristic is sometimes considered as intrinsic to the music: some elements
in the music composition can represent or symbolize an emotion (Carr, 2004). Cooke
illustrates this phenomenon by describing third intervals in Western music (Cooke,
1959, p. 57):

Western composers, expressing the ‘rightness’ or happiness by means of the
major third, expressed the ‘wrongness’ of grief by means of the minor third
[. . . ].
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This point of view that interprets musical meaning in terms of emotional de-
scriptions is highly debatable, as these considerations often originate from cultural
effects (Ozaki et al., 2023) or musical education. Indeed, in music and language,
musical or textual symbols do not inherently carry meaning. Instead, meaning is
attributed to these symbols because a particular community, from a specific era or
culture, collectively establishes an agreement to associate a certain set of signs with a
particular concept (McClary, 2002, p. 21). Moreover, in the same way that language
can reuse past content to construct metaphors or allegories, typically as references
to existing works, music can also use reification of motives or chord progressions to
evoke concepts or emotions (Wingstedt et al., 2010) or even text painting (Zbikowski,
2009) aiming at illustrating musically a text.

Additionally, there is a notable asymmetry in music and language learn-
ing (Waller, 2010): a majority of people can read and write text nowadays, whereas
only a minority can read music, and even fewer can compose it. A gap between per-
ception and understanding can exist in music, compared to language, where reading a
text is usually directly linked to understanding the meaning of a text. In other words,
interpreting music needs making actual music (Adorno and Gillespie, 1993). This is
especially true since analyzing music relies on personal interpretation, which can
be biased by culture, potentially leading to distinct levels of understanding or even
diverse interpretations from different individuals.

Thus, the concept of sense, meaning, or semantics, which is prevalent and central
in text, is far from being well defined in music. The question of attaching meaning or
semantics to music has been a subject of extensive debate for centuries and is unlikely
to have a universal answer. Returning to a technical standpoint, this epistemological
debate underscores the need of carefulness when applying NLP tools for symbolic
music.

2.1.2 Cognitive responses to music and natural language

Music and language can be produced or received by humans under an auditive or
written form. Several common physiological phenomena have been found using
language or music as stimuli.

Grammatical and syntactic rules induce expectancy in both language and mu-
sic (Jackendoff, 2009; Pearce, 2018). Interestingly, transgressing these rules lead
to similar cognitive reactions for the interlocutor or the listener (Pulvermüller and
Assadollahi, 2007). For example, it has been proved that semantic processing in
language induces comparable cognitive behaviors as harmonic processing in music
in terms of event-related potentials (Besson and Schön, 2001). These perceptive
similarities with natural language based on underlying rules in music may hint
towards an existing grammar in music (Section 2.2.2).

This expectancy extends to stylistic or language enculturation, beyond local phe-
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nomena as grammar. In music, cognition studies have shown that Western listeners’
perception of particular rhythms differ in comparison with listeners exposed to
non-Western music (Haumann et al., 2018). Interestingly, for language, this ability
to discriminate phonetics in different languages tends to decline with age. Instead,
this decline can be counter-balanced more effectively through social interaction than
through long-term exposure to foreign languages (Kuhl et al., 2003).

To a larger extent, parallels can be found when writing music and text. There is
typically a gap in hand-writing speed between experienced and beginner musicians,
as well as differences in the stroke order used to draw note heads, stems, and
beams (Bertiaux et al., 2023). This phenomenon is also observed in text handwriting,
particularly in logographic languages like Chinese, where children exhibit varying
stroke order and precision (Chang and Yu, 2022). In addition, handwriting speed
also increases with age, which can be seen as language proficiency level (Graham
et al., 1998).

2.2 Symbolic music and text as structured data

Language and music are often directly associated due to their similarities when seen
as structured data. For example, this is the case with lyrics which are words aligned
with a musical melody. Not every melody can pair with any text, as both must share
compatible structural patterns. For instance, in the second half of the 20th century,
with the adoption of sacred music texts, originally sung as Gregorian melodies, to
vernacular languages, multiple technical recommendations of such process have
been prescribed in order to make the music reflecting the structure of the text:

The melody adorns the words, grows out of them and is closely united to them
by the prosody, the meter, the quantitative and qualitative characteristics of
the language, the tonic accent, the sentence structure and the very organic
nature of the words themselves.

(Sacred Music, Volume 110, Number 3, 1983)

This link in terms of prosody and syllabic meter, and rhythmic patterns, is one of
the multiple structural similarities between language and music seen as hierarchical
structures (Section 2.2.1). Going further, this structural aspect may be governed by
high level grammatical rules (Section 2.2.2).

2.2.1 Hierarchical representations

Text and symbolic music representations are both semiotic systems (Chomsky, 1980)
based on arrangements of symbols. Text is built on characters or ideograms and
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written music can be transcribed with a variety of symbols derived from various
notation systems such as standard notation, numbered notation or tablature. Sim-
ilarities can be found between levels of segmentations of text and symbolic music.
However, when focusing on what these symbols truly represent, key differences, such
as rhythm or simultaneity in music, make these two modalities distinct.

Segmenting text and music – Both can be represented as sequences of elements
which can be segmented or grouped at different levels (Figure 2.1). Text can be
segmented into characters, syntactic phrases, sentences and paragraphs, In the same
way, music can be segmented into temporal units such as notes, motifs, musical
phrases, or sections (Lerdahl, 2012).

Sonata 16 in C major
Sonata facile

W. A. Mozart
Allegro K 545
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3.4 Attention-based models

Attention is a mechanism proposed by Bahdanau et al. [4], initially as an improvement of RNNs
(Section 3.3). Vaswani et al. [219] then introduced Transformers showing that a model based solely
on attention - without using any recurrent mechanism - can outperform state-of-the-art results in
NLP. More precisely, Transformers are based on a self-attention mechanism and multi-head attention
blocks. They offer two main improvements to RNNs. The processing of sequences is sped up, as the
entire sequence is passed through the model once and processed in parallel. Moreover, it provides
a solution to the problem of vanishing or exploding gradients that occurs with basic RNNs and the
issue of hard training with LSTMs. Whereby during the weight update process of the recurrent
network, known as back propagation through time, such recurrent models often struggle in capturing
long-term dependencies between words [168]. This phenomenon is also true for music generation
[90].

Transformers have been applied to symbolic music representations, but also in a variety of other
domains, such as computer vision [54] or audio [53]. Their use has been greatly facilitated with the
development of libraries, such as AllenNLP [70], FairSeq [171] or more predominantly, HuggingFace
[232]. This last library offers model architectures, pre-trained models, tokenizers, and various utilities
to simplify the development and deployment of NLP applications. As a result, numerous MIR studies
have started utilizing HuggingFace by leveraging its tools and resources for musical tasks. These
include implementations of subword tokenizers (Section 2.1.2) such as BPE [201] or Unigram [122]
used by Kumar et al. [123] and model implementations such as BERT [47] for MidiBERT [28] or
GPT-2 [184] used in MMM [58].

In this section, we propose an overview of attention-based models applied to symbolic music data
seen through three technical prisms. A first way of characterizing these models is based on their
training paradigm, namely end-to-end training on specific tasks, or pre-training and fine-tuning
(Section 3.4.1). In a musical sense, pre-training assumes a hypothesis of a general understanding of
music. Beyond the training process, we describe various architectures that have been implemented
(Section 3.4.2). The model architecture, based on Transformer encoders, decoders, or combining
different types of data, influences how music is processed. Finally, we present the enhancements of
the Transformers’ internal mechanism to specifically process symbolic music data (Section 3.4.3).
Summaries of these Transformer-based models for symbolic MIR are presented in Tables 3 and 4.

Language Music

Paragraph

Sentence

Word

Character

Section

Phrase

Motif

Note or
Chord

ScoreDocument

Figure 2.1: Possible segmentation levels in text and symbolic music. Such segmentations can,
however, include more or less fine-grained levels and their delimitations can be ambiguous.

Text and music rely on common high-level structures. In text, the global structure
of a discourse or an argumentation might neither include the same sections nor the
same writing order with a novel. Similarly, music often follows established forms,
like the fugue (Mann, 1987) or the sonata form (Hepokoski and Darcy, 2006) which
have served as standards across different eras. Even in specific music genres such
as religious chants, high-level structural organizations define forms such as tropes,
canticles, or hymns.

At a lower level, identifying boundaries of musical motives and phrases remain
subjective (Lidov, 1997) or can even overlap (Hentschel et al., 2021). Indeed, even if
musical segmentation in motives or phrases is widely accepted because such motives
are repeated at the level of a musical piece, as compared to language (Margulis, 2013),
identifying the boundaries to such elements is often highly subjective. This is also re-
flected in the ambiguous terminology to denote such segmentations, including terms
such as “motif, theme, period, or phrase” that can be used interchangeably (Cen-
kerová, 2017). This ambiguity is also present when defining these segments, such as
the circular definition of a cadence in Western classical tonal music as presented by
Bockmon and Starr (1962, p. 193):
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A phrase is a unit of music structure terminated by a cadence. [. . . ] A cadence
is an effect of temporary or permanent conclusion marking the termination of
a phrase.

In text, some languages can rely on whitespaces as a good approximation for
word delimiters, even though segmentation remains unclear in some languages,
such as Chinese (Huang and Xue, 2012), even in languages where whitespaces are
present (Dien et al., 2001). In this sense, music might be more easily compared
to unsegmented languages (Palmer, 2000) where word segmentation can be un-
clear (Huang and Xue, 2012).

Time dimension in text and music – Text and music can be perceived as elements
unfolding in time (Zbikowski, 2009). Unlike language represented as sequences,
Western music must be described following at least two dimensions, including time
and pitch. While speech might have a temporal dimension in terms of speech
rate (Wallin et al., 2001), text does not explicitly encode any of these rhythmic
modulations. In contrast, musical rhythm is based on an isochronic grid (Jackendoff,
2009) in most of musical genres. In this grid, notes are notated with rigorous timings,
in terms of onsets and durations, beyond some microtimings linked to performance
embellishments or tempo changes. Moreover, this rhythmic dimension of music is
a central characterization of a piece: two melodies with identical pitches but with
different rhythms differ in their sheet music retranscription. This stands in contrast
to speech, where discourses delivered with a fast and low speech rate are transcribed
as text in exactly the same way. Rests are also integral to sheet music, unlike natural
language, where silences are implicitly encoded through punctuation but appear
mainly in speech for rhetorical or discourse effects.

However, despite this differences of rhythm annotation, a common point be-
tween text and symbolic music is the implicit existence of accentuated beats or syl-
lables (Brown, 2017; Reich and Rohrmeier, 2024). Interestingly, this analogy goes
further as accentuated syllables for a same language may depend on regional cul-
tures (Schwab et al., 2012), in the same way as strong and weak beats may depend
on the origin of the musician (Haumann et al., 2018).

Pitch and simultaneity in music – Language viewed as speech may also have a
pitch dimension relating to prosodic contours (Wallin et al., 2001), but such pitch
modulation is not explicitly represented in text. In contrast, pitch is a central
characteristic of a musical melody even though its absolute value matters less than
the intervals between pitches when recognizing a piece (Dowling and Fujitani, 1971).

However, while sequences of notes in monophonic music might be compared
to words in text, polyphony adds a dimension that does not find any analogous
element in text (Besson and Schön, 2001). Polyphony is based on simultaneous
sequences of notes that create harmony. In text, such a concept of concurrent
sequences of words is not applicable. The number of simultaneous sequences can
vary throughout a piece and can be vastly different from each other, resulting in
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different musical textures (Huron, 1989). This aspect leads to a whole set of tasks
specific to music, such as harmonization as explored in Chapter 8, which aims at
writing these concurrent events.

Though, an interesting parallel between musical pitch and textual words is their
ability to represent the same concept through different forms. In music, this is
referred to as enharmonic notes, where a common sounding pitch is named differently
(e.g. C♯ and D♭). This typically occurs in the context of tonal harmony (Section 2.2.2),
often to enhance readability or to conform to conventional chord spelling and har-
monic standards. Similarly, in text, a common concept can be referred to as from
multiple words, a phenomenon called synonymy.

Symbol polymorphism – Finally, with a perspective of computational representa-
tion of text and symbolic music data, it may be noted that elements which constitute
a musical score are less homogeneous than text data. While textual elements quite
homogeneous (mostly characters or ideograms, some structural elements like punc-
tuation or brackets), music symbols combine structural elements (bar, beat, etc.),
note-related information (pitch, duration, dynamics, etc.) and global information
(tempo, instrument, etc.). Such heterogeneity of information contained in a score may
be linked to the fact that music is ultimately intended to be performed, in contrast
with text which has its own finality.

Regarding sequential representations of symbolic music, this polymorphism
possibly introduces an artificial sequentiality when modeling music because multi-
ple musical features describing one temporal event must be ordered. For instance,
characteristics, such as note-related information cited above, all describe a single
temporal event but must be ordered for it to be presented sequentially. Going further,
this artificial sequentiality is even accentuated by the modeling of simultaneous
events mentioned above. Indeed polyphonic music is defined as simultaneous musi-
cal streams (chords or instruments) but must be encoded as a unidimensional stream
of events. This aspect of artificial sequentiality is discussed further in Section 4.1.2,
presenting solutions to overcome this issue.

2.2.2 Musical and textual grammatical rules?

Grammar is a set of rules governing how single elements (e.g. words) combine with
other ones to build coherent structures (e.g. phrases or sentences). While grammar is
central for natural language, the existence of a global grammar describing music is
also not unanimously accepted, even in a specific style (Dempster, 1998). Multiple
grammars have been proposed to describe music from a general point of view, such
as the implication-realization model (Narmour, 1990). A notable example is the
Generative Theory of Tonal Music (GTTM) (Lerdahl and Jackendoff, 1996), which relies
on musical rules to generate or analyze music in a way that reflects the perception of
tonal structures. GTTM comprises several components, each implementing rules to
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construct musical structures, including:

• grouping structure, which divides music into hierarchical groups, such as motifs,
musical phrases;

• metrical structure, which organizes music as alternations of weak and strong
beats;

• time-span reduction, which identifies more important notes within a given
time-span;

• prolongational reduction, which structures music as harmonic tensions and
resolutions.

Harmonic concepts have been modeled as a grammar for music, in particular in
the context of tonal music1. They notably give directions to the musical stream by
carrying different functions (Temperley, 2004; Adorno and Gillespie, 1993) to create
tension, release or closure patterns like cadences (Fornäs, 1997). Interestingly, in the
same way that words are polysemous and take on a meaning thanks to their local
context2, an isolated musical note or motif can also carry multiple functions: only
the context in which it occurs within the piece defines its potential role.

Such harmonic rules are established by a specific musical style or era (Klein and
Jacobsen, 2012): however, something which is considered “regular” in a style can
appear as an “irregularity” in another style, while still being considered as music.
Ducros (2012) notably argues that, because most people are predominantly exposed
to tonal music, deviations in tonal contexts are easily perceived, whereas in atonal
music, the notion of expectation may become irrelevant. He stated:

Non-specialists can spot two wrong notes in a tonal music, whereas specialists
cannot spot 79 wrong notes in an atonal music. [. . . ] Tonal music composers
have at their disposal a language in which the public masters a large part of
the rules, even if it is not able to state them.

(Des non-spécialistes repèrent deux fausses notes dans une musique tonale, alors que
des spécialistes ne repèrent pas 79 fausses notes dans une musique atonale. [. . . ] Les
compositeurs de musique tonale avaient et ont à leur disposition un langage dont
le public maîtrise une bonne partie des règles même quand il est incapable de les
énoncer.)

1Motivated by this parallel, our work in Chapter 7 typically explores whether deep learning models
learn functional harmony in a manner similar to how NLP models learn grammar.

2For example, the word key can be used in different contexts: “a C major key”, “a key to unlock a
door”, “a piano key”, “the Enter key on a keyboard” or “the key to success”.
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This absence of “rightness” in music consolidates the idea that aesthetics plays
a prominent role in music (Krausz, 2019). Going further, music might be closer to
poetry than natural language when considering this aesthetic dimension. On this
question regarding aesthetics in language and music, Bernstein stated (Bernstein,
1976, p. 79):

You see, language leads a double life ; it has a communicative function and
an aesthetic function. Music has an aesthetic function only. For that reason,
musical surface structure is not equatable with linguistic surface structure.

Consequently, in MIR, the evaluation of systems performing generative or even
analysis tasks can be delicate due to this aesthetic dimension.





Part I

A Structured Overview of
Natural Language Processing Methods

for Symbolic Music Information
Retrieval and Generation
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This part is based on a journal article published in ACM Computing Surveys (Le
et al., 2025a). This work has been realized in the context of a collaboration
following an international research visit in the Audio, Music, and AI Lab (AMAAI)
from Singapore University of Technology and Design (SUTD) in October 2023.

As depicted in Chapter 1, Natural Language Processing methods have been
becoming more and more prominent in the field of Music Information Retrieval. The
motivations of such adoption of NLP tools for symbolic music is likely motivated by
the high-level similarities between language and music in general (Chapter 2).

On a more technical point of view, these contributions coming from NLP are of
diverse nature. Therefore, this part is dedicated to a structured overview of NLP
methods for symbolic music processing, organized around three axes: similarities
and specificities of NLP and MIR tasks motivating representations of symbolic music
inspired by NLP and models adapted from NLP for symbolic music.

MIR NLP

Recurrent models

Training paradigm

Elementary tokens

Model architecture

Attention-based models

Shallow models

Free generation
Priming
Infilling

Style transfer
Composer/author detection

Style/genre classification
Emotion/sentiment classif.

...

Tasks (Chapter 3)

Representations (Chapter 4) Models (Chapter 5)

Summarization
Translation
Entailment

Part-of-speech tagging
Named entity recognition

Dependency parsing
Word sense disambiguation

...

Harmonic analysis
Harmonization
Accompaniment generation
Text-to-MIDI
...
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M
IR

Time-slice-based
tokenization

Tokenization strategy

Vectorization

Contextual embeddingsStatic embeddings

Event-based
tokenization

Composite tokens

• Chapter 3: The task is the purpose of a system, whether involving an objective
evaluation or interactions with the final user. The shared ground between
symbolic music and natural language processing in terms of tasks is wide,
encompassing numerous analogous tasks from generative or analysis purposes,
while keeping some specificities.
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• Chapter 4: From a technical point of view, choosing a representation refers to
encoding content (text or symbolic music) into a format suitable for compu-
tational processing. Adapting NLP models to symbolic MIR mainly involves
sequential representations.

• Chapter 5: The model performs a task by processing a representation of the
input content. Such a model can be rule-based or learned, with specific archi-
tectures, in particular for neural networks and different training paradigms.
Inside these models initially developed for text processing, mechanisms can be
specifically tailored for symbolic music data.

These three aspects are far from being independent from each other (e.g. a model
needs a representation as inputs and a task to be trained on, while the representation
itself may depend on the nature of the data relevant to the target task). Nevertheless,
we have opted for this organization to present the three core components of a MIR
project that can draw inspiration from NLP methodologies.
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MIR and NLP tasks: similarities and
specificities

3.1 Tasks learned from labeled data . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1 Sequence classification and regression . . . . . . . . . . . . . . . . . . 24
3.1.2 Token classification and regression . . . . . . . . . . . . . . . . . . . . 25

3.2 Tasks relying on unlabeled data . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Unsupervised clustering and segmentation . . . . . . . . . . . . . . . 28
3.2.2 A prominence of generative tasks in MIR an NLP . . . . . . . . . . . 29
3.2.3 Unlabeled text and symbolic music datasets . . . . . . . . . . . . . . 31

Beyond the high-level existing parallels between text and symbolic music, the
application of NLP methods to symbolic music processing is primarily driven by their
potential to effectively address MIR tasks. In this chapter, we review task similarities
that encourage MIR to adopt representations and models from NLP, even though
many NLP tasks have no direct counterpart in MIR due to the differences between
natural language and music.

Nowadays, most of the tasks performed in NLP and MIR rely on data-driven
learning methods. One possible way to organize these tasks is based on the type of
data required to train the models, namely tasks depending on labeled data (Section 3.1)
and tasks which can rely on unlabeled data (Section 3.2). From a model point of view,
the first category of tasks rely on supervised learning while the second category may
be considered as unsupervised learning. Naturally, all these tasks rely on corpora or
datasets which have been compiled of created by the MIR and NLP communities.

23
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3.1 Tasks learned from labeled data

Tasks relying on labeled data typically require annotations by experts both in music
and text. These tasks are most often analysis tasks, in contrast with generative tasks.
We assume text and symbolic music can be represented as sequence of elements,
referred to as tokens. In practice, textual tokens can be words or subwords and music
tokens can be notes, characteristics of a note, such as pitch, duration or instrument, or
higher-level objects such as chord labels or slices of multiple notes. Representations
of text and music as sequential data will be further detailed in Chapter 4. Assuming
this sequential representation of text and music, these tasks can be categorized into
sequence classification or regression tasks (Section 3.1.1), where the full sequence is
evaluated with a unique label, and token classification or regression (Section 3.1.2),
where each single element of the sequence is assigned a label.

3.1.1 Sequence classification and regression

(a) Example of a text sequence classification
task: author classification.

Shakespeare

J.R.R Tolkien

C.S. Lewis

A. Christie

...

Chapter 1

My dear Wormwood,

I note what you say about guiding our patient’s reading and taking care that he sees a good deal of his materialist
friend. But are you not being a trifle naive? It sounds as if you supposed that argument was the way to keep him
out of the Enemy’s clutches. That might have been so if he had lived a few centuries earlier. At that time the
humans still knew pretty well when a thing was proved and when it was not; and if it was proved they really
believed it. They still connected thinking with doing and were prepared to alter their way of life as the result of a
chain of reasoning. But what with the weekly press and other such weapons we have largely altered that. Your man
has been accustomed, ever since he was a boy, to have a dozen incompatible philosophies dancing about together
inside his head. He doesn’t think of doctrines as primarily “true” of “false”, but as “academic” or “practical”,
“outworn” or “contemporary”, “conventional” or “ruthless”. Jargon, not argument, is your best ally in keeping him
from the Church. Don’t waste time trying to make him think that materialism is true! Make him think it is strong,
or stark, or courageous — that it is the philosophy of the future. That’s the sort of thing he cares about.

The trouble about argument is that it moves the whole struggle onto the Enemy’s own ground. He can argue too;
whereas in really practical propaganda of the kind I am suggesting He has been shown for centuries to be greatly
the inferior of Our Father Below. By the very act of arguing, you awake the patient’s reason; and once it is awake,
who can foresee the result? Even if a particular train of thought can be twisted so as to end in our favour, you
will find that you have been strengthening in your patient the fatal habit of attending to universal issues and
withdrawing his attention from the stream of immediate sense experiences. Your business is to fix his attention on
the stream. Teach him to call it “real life” and don’t let him ask what he means by “real”.

Remember, he is not, like you, a pure spirit. Never having been a human (Oh that abominable advantage of the
Enemy’s!) you don’t realise how enslaved they are to the pressure of the ordinary. I once had a patient, a sound
atheist, who used to read in the British Museum. One day, as he sat reading, I saw a train of thought in his mind
beginning to go the wrong way. The Enemy, of course, was at his elbow in a moment. Before I knew where I
was I saw my twenty years’ work beginning to totter. If I had lost my head and begun to attempt a defence by
argument I should have been undone. But I was not such a fool. I struck instantly at the part of the man which I
had best under my control and suggested that it was just about time he had some lunch. The Enemy presumably
made the counter-suggestion (you know how one can never quite overhear What He says to them?) that this was
more important than lunch. At least I think that must have been His line for when I said “Quite. In fact much
too important to tackle it the end of a morning”, the patient brightened up considerably; and by the time I had
added “Much better come back after lunch and go into it with a fresh mind”, he was already half way to the door.
Once he was in the street the battle was won. I showed him a newsboy shouting the midday paper, and a No. 73
bus going past, and before he reached the bottom of the steps I had got into him an unalterable conviction that,
whatever odd ideas might come into a man’s head when he was shut up alone with his books, a healthy dose of
“real life” (by which he meant the bus and the newsboy) was enough to show him that all “that sort of thing” just
couldn’t be true. He knew he’d had a narrow escape and in later years was fond of talking about “that inarticulate
sense for actuality which is our ultimate safeguard against the aberrations of mere logic”. He is now safe in Our
Father’s house.

You begin to see the point? Thanks to processes which we set at work in them centuries ago, they find it all but
impossible to believe in the unfamiliar while the familiar is before their eyes. Keep pressing home on him the
ordinariness of things. Above all, do not attempt to use science (I mean, the real sciences) as a defence against
Christianity. They will positively encourage him to think about realities he can’t touch and see. There have been
sad cases among the modern physicists. If he must dabble in science, keep him on economics and sociology; don’t
let him get away from that invaluable “real life”. But the best of all is to let him read no science but to give him
a grand general idea that he knows it all and that everything he happens to have picked up in casual talk and
reading is “the results of modem investigation”. Do remember you are there to fuddle him. From the way some of
you young fiends talk, anyone would suppose it was our job to teach!

Your affectionate uncle

Screwtape

(b) Example of a symbolic music sequence
classification task: composer classification.

W.A. Mozart

L.v. Beethoven

C. Debussy

A.L. Webber

...
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Figure 3.1: Examples of sequence classification tasks in NLP and MIR. The full sequence
(i.e. a text or a score in these examples) is classified under a common label.

Tasks involving labeled data that aim to classify whole textual document or
music piece, or text or music section often share similarities (Figure 3.1). Identi-
fying or distinguishing its author can be expressed as a task of text authorship
attribution (Stamatatos et al., 1999) or music composer classification (Pollastri and
Simoncelli, 2001). More recently, an emerging task is the detection of AI-written
text (Elkhatat et al., 2023) or AI-generated music which is starting to be considered
in the audio field (Vila et al., 2025) but not in the symbolic music field. These tasks
are closely related to music genre classification (Corrêa and Rodrigues, 2016) or text
style classification (Kessler et al., 1997). To a larger extent, folk song origin classifi-
cation (Hillewaere et al., 2018) can be analogous to language detection (Jauhiainen
et al., 2019). All of these tasks involve recognizing and identifying across an entire
sequence specific patterns that are characteristic to a composer/author, genre or re-
gional structure which can be stylistic or structural. For training data-driven models,
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datasets including symbolic music with basic metadata such as composers (Zhang
et al., 2022), folk song origin (Schaffrath, 1995), or musical genres (Ens and Pasquier,
2021) are numerous. In the same way, text datasets often include metadata such
as authors1, writing style (Jasleen Kaur, 2014) or language (de Gibert et al., 2024).
Beyond these objective tasks, tasks called music emotion recognition (Hung et al.,
2021) and sentiment analysis from text (Wankhade et al., 2022), which both aim
at labeling a full sequence with an emotion or sentiment, may be analogous as they
share a part of subjective assessment from a user. In practice, these “emotions” are
quantified: for music, the EMOPIA dataset (Hung et al., 2021) annotates emotion as
valence and arousal values, while for text, sentiment is often restricted to particular
scales, such as three-point scales composed of positive, neutral or negative senti-
ments (Mejova, 2009). This objectivity is also found in a task of difficulty assessment:
in the same way as text must be understood by the reader to a certain degree, music
can be more or less easily interpreted by a musician. Therefore, a task of text read-
ability assessment (Deutsch et al., 2020) or music difficulty assessment, notably
based on chord progressions (Vásquez et al., 2023) or fingering displacements (Chiu
and Chen, 2012), can be both modeled as sequence regression tasks. This parallel
should, however, be nuanced as the music difficulty assessment task is more closely
related to the musical performance, rather than a possible “comprehension difficulty”
of the written score.

Naturally, multiple tasks in a field do not find a direct counterpart in the other.
In MIR, a task of key detection (Temperley, 1999) assumes a local context and
builds upon the concept of key signature, a notion that has no equivalent in text.
Similarly, in NLP, some tasks have no direct analogue in music. This includes topic
analysis (Jelodar et al., 2021), textual entailment (Poliak, 2020), or author age or
gender profiling (HaCohen-Kerner, 2022), which rely on sociolinguistic cues and
semantic content that music does not directly convey or is debated (Sergeant and
Himonides, 2016).

3.1.2 Token classification and regression

While sequence classification tasks aim at classifying a full sequence into a label,
token classification tasks aim to assign one (or multiple) label(s) to each individual
element – or token – within the sequence. Seen from a model viewpoint, such tagging
task is typically performed by a sequence-to-sequence (seq2seq) model, where the
input is a sequence of tokens and the output is the corresponding a sequence of
labels of the same sequence length.

However, as further explored in Chapter 4, the nature or tokens involved in
sequential representations of text and symbolic music differs significantly. Therefore,
while similar model architectures can be used to perform such tasks, the nature of
the labels annotating the tokens also significantly differ in their nature (Figure 3.2).

1e.g. the Gutenberg project which gathers full books with metadata.

https://www.gutenberg.org/
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(a) Example of a text token classifica-
tion task: part-of-speech tagging. A to-
ken is a word.

You are currently reading my long thesis

Pronoun Verb Adverb Verb Pronoun Adjective Noun

(b) Example of a symbolic music token classification task:
roman numeral analysis. A token is a quarter note-long
slice.
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Figure 3.2: Examples of token classification tasks in NLP and MIR. Each token of the
sequence (i.e. word or score slice in these examples) is assigned an individual label.

Text token classification tasks – Multiple tasks relate to tagging tasks which consist
in assigning each token a syntactical or grammatical label. These includes part-of-
speech tagging (Harris, 1962) which consists in assigning to each word of a text a
particular part-of-speech (i.e. noun, verb, adjective, adverb. . . ). This task is typically
a disambiguation task, as a word can assume different roles depending on the context,
regardless of its semantics. For example, the word “play” typically has a different tag
in the sentence “I play the trumpet” and “I watched a play at the theater”. Similarly,
named-entity recognition (Nasar et al., 2021) aims to identify and classify words into
predefined categories, typically including entities such as people, locations, dates,
etc. This task is also a disambiguation task as a word can take different category, or
even not be a name entity: the word may can be used in the sentence “She was born
in May” (date), “Brian May is a guitarist” (people) or “May I help you?” (not a named
entity).

Beyond token-by-token tagging tasks, segmentation tasks can also be framed as
token classification problems, where a contiguous sub-sequence of tokens is assigned
a common label. In some languages, tasks of phrase segmentation (Huang et al.,
2010) or word segmentation (Xue, 2003; Lee et al., 2003) are non-trivial as phrases,
words or characters are not separated by punctuation marks such as spaces or
periods. These segmentation tasks are not limited to languages using non-Latin
alphabet. They can also occur in languages such as Vietnamese (Hieu Nguyen et al.,
2025), where words are often considered as being formed from morphemes that
are themselves separated by spaces. These tasks can thus be formulated as binary
token classification tasks, where each token is assigned a label indicating whether it
represents a phrase or word boundary.

Music token classification tasks – Token classification tasks in MIR can also refer to
segmentation tasks. Similarly to textual structure segmentation, musical structure
retrieval has been explored under the form of musical phrase retrieval (Guan et al.,
2018) or musical form analysis (Zhao et al., 2023b) such as fugue form analysis (Gi-
raud et al., 2015) or sonata form analysis (Allegraud et al., 2019).

At a lower level, single token tagging tasks are less common in MIR. In contrast
with text where a single token can carry information by itself (e.g. word conveying
semantic meaning, or subword carrying morphological functions, serving as prefix,
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suffix, radical, . . . ), the lack of tagging tasks in MIR may be due to the lack of infor-
mation carried by a single musical token in several representations (e.g. MIDI-based
tokenizations or representations separating pitch, duration, onset, . . . ). However,
MIR tagging tasks can instead operate on symbolic music data by modeling each
element in the sequence as a higher-level musical object (Figure 2.1). At a bar-level,
recent studies have focused on analyzing musical texture at a bar-level for piano
music (Couturier et al., 2022) or orchestral music (Le et al., 2022). At a (sub-)beat
level, functional harmony analysis – or roman numeral analysis (Nápoles López
et al., 2021) – is often modeled as a tagging task where each (sub-)beat is annotated
with multiple attributes, such as local key, chord degree or inversion. These annota-
tions allow for the labeling of each chord with a roman numeral label, describing the
nature of a chord and its function within a tonal context. In the same way as several
NLP tasks described above, these tasks are disambiguation tasks as a chord can have
different labels depending on the context, and can even be described differently
depending on the annotator (Koops et al., 2019). In Chapter 7, we chose to focus on
this task of functional harmony analysis2 because it can be modeled as a tagging task,
making it closely related to an NLP task. Local token classification is also used in
tasks relating to music performance, for instance with playing technique prediction
in the case of monophonic guitar music (D’Hooge et al., 2023).

These tasks require high quality annotations so that multiple studies or initiatives
aiming at building highly accurate human-annotated datasets have been initiated.
Focusing on piano music, the TAVERN dataset (Devaney et al., 2015) includes chord
and phrase annotations of a corpus of classical themes and variations. Similarly,
(Hentschel et al., 2024) focuses on a later period of music and includes functional
harmony annotations. This dataset, among others, has been annotated within a uni-
fied framework to form the DCML corpora3. This annotation framework is extended
for larger orchestral ensembles and symphonic music with the S3 dataset (Lin et al.,
2024b), which also gathers texture annotations.

The need for highly accurate annotations constrains the size of datasets available
for training data-driven models on these music analysis tasks. On the contrary,
unlabeled datasets – far more numerous, both in MIR and NLP– can be leveraged for
other types of tasks, in particular, generative tasks.

3.2 Tasks relying on unlabeled data

A variety of tasks rely on unlabeled music and text datasets. While generative tasks,
such as text generation or music composition, are nowadays often the primary
motivation for building large unlabeled datasets, a few analysis tasks can also be
performed with unlabeled data, such as clustering, unsupervised segmentation and

2We give further musical details on this task in Section 7.2.1.
3https://github.com/DCMLab/dcml_corpora

https://github.com/DCMLab/dcml_corpora
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their variants. From a model training perspective, models for these tasks are often
trained through unsupervised or self-supervised learning.

3.2.1 Unsupervised clustering and segmentation

Some analysis tasks rely on unsupervised learning, where a model is only fed with
inputs and must discover its underlying structures on its own. Two main classes
of tasks gather NLP and MIR tasks relying on unlabeled data: segmentation and
clustering.

While segmentation tasks can possibly rely on labeled data modeled as a token
classification task, an unsupervised approach typically permits to automatically
split a text or score into segments without having an a priori characterization of
each segment. At the scale of words or subwords, subword tokenization algorithms
for text (Sennrich et al., 2016) or music (Fradet et al., 2023a) can be considered as
unsupervised word segmentation tools, as described in Section 4.1.2.1 about token
grouping. Though, segmentation most often refers to the scale of the score or the doc-
ument. Therefore, in music, musical phrase segmentation can be performed in an
unsupervised way, while being less effective than supervised methods (Bassan et al.,
2022). In NLP, the semantic nature of text allows it to be segmented into coherent
blocks centered around the same topic, a task referred to as topic segmentation (Bai
et al., 2023).

Clustering tasks aim to group data into a certain number of groups, called clus-
ters, based on their similar in terms of particular characteristics. In the same way
as supervised and unsupervised segmentation, clustering can be considered as an
unsupervised way of performing classification, without relying on predefined classes
or explicit descriptions of the expected clusters. In NLP, topic modeling (Grooten-
dorst, 2022) aims at clustering entire or parts of documents by topic. Clustering
of parts of a text document can be performed on multi-author documents, where
sections are grouped according to their likely author (Tschuggnall et al., 2017). In
MIR by contrast, the notion of topic is absent, and multi-author contributions to a
piece of music typically occur across different stages of its creation (e.g. composition,
orchestration. . . ) rather than within the composition itself. However, clustering tasks
in MIR are typically based on style with musical genre clustering (Cilibrasi et al.,
2004). This allows to find proximity between musical modes (Liumei et al., 2021)
or musical genres (Corrêa et al., 2011). In particular, building such clusters helps
to interpret the proximity of samples within a cluster and analyze model errors by
comparing specific features such as musical harmony (Dervakos et al., 2022).

Such clusters resulting from these tasks can be then used for substitution tasks.
Given that elements within a common cluster share similar properties, substitution
tasks consist in replacing an element of a text or music with one element of the
cluster. More precisely, such replacement can be performed with text using syn-
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onyms built via word sense induction (Amrami and Goldberg, 2019) or with score
slices occurring within the same context (Herremans and Chuan, 2017) found via
embedding projection.

3.2.2 A prominence of generative tasks in MIR an NLP

While the field of music information retrieval did not originally include music genera-
tion, the MIR community has shown a growing interest for music generation tasks in
the last few years. For instance, ISMIR call-for-papers now include “music generation”
among their tasks, or the MIREX competition now include audio and symbolic music
generation4. This current trend is notably reflected in the prominence of MIR survey
articles that mostly focus on generative systems. These surveys generally fall into two
categories. A first category classifies generative systems from a technical perspective.
These systems rely on methods such as grammars or Markov chains (Fernández and
Vico, 2013) or more recently on deep learning methods (Briot et al., 2020), organized
by model architecture (Wang et al., 2023; Ma et al., 2024) or types of generation
conditions (Zhu et al., 2023b; Dash and Agres, 2023). A second category of overviews
bring together works that share a common musical purpose or task (Herremans et al.,
2017) and categorize them based on the nature of the generated content (Liu and
Ting, 2017) or by the context surrounding the generated content (Ji et al., 2023).

Generative tasks are most often performed through self-supervised learning
(i.e. predicting parts of the input itself, by learning representations and patterns
without external annotations). Several generative tasks between NLP and MIR
are similar. Such tasks often involve a predefined context, which prompts the
model to generate content conditioned on this initial input: these tasks are often
referred to as constrained generation. Music priming (Huang et al., 2019) and text
continuation (Radford et al., 2019) involve generating a coherent continuation from
a given starting music or text sequence. Similarly, music infilling (Guo et al., 2022)
and text infilling (Donahue et al., 2020), consist in completing a segment of a
music piece or text between two given boundaries. At the scale of a piece or a
document, style transfer or controlled generation can exist in both MIR and NLP. This
task aims at rewriting a music piece or text into another “style” while preserving
the core “content”. In audio music, timbre style transfer refers to the modification
of sound characteristics of an audio signal, such as transformation of the sound
of the perceived instrument. For symbolic music, composition style transfer (Dai
et al., 2018) aims at transforming musical genre (Cífka et al., 2020) or textural
characteristics (von Rütte et al., 2023) of a reference music. Similarly, in NLP (Jin
et al., 2022), text style transfer can be defined through high-level elements such as
formality (Chawla and Yang, 2020), politeness (Madaan et al., 2020), or diachronic
language style (Jhamtani et al., 2017). To a larger extent, machine translation (Dabre
et al., 2020) can also be interpreted as a type of style transfer, where an underlying

42024 MIREX competition: https://www.music-ir.org/mirex/wiki/2024:Main_Page

https://www.music-ir.org/mirex/wiki/2024:Main_Page
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semantic content is preserved, while the form changes through a different language.
More recently, text-conditioned generation has become more and more popular for
the general public. In NLP, this includes chatbot dialog5 which internally relies on
a prompt-based system, and text-conditioned music generation (Lu et al., 2023)
which must involve multimodal models. In the audio domain, commercial tools have
been released such as Suno6 or Udio7.

However, NLP and MIR also include numerous tasks that are inherent to one
field. For example, harmonization or accompaniment generation (Zhao et al.,
2024b) in music relies on the concept of harmony which exists due to the existence
of music polyphony, a concept which is inexistant in text. In contrast, text sum-
marization operates under the assumption that the semantic content of a text can
be condensed, whereas music may lack a direct equivalent to semantics, making
a parallel less straightforward for this task. These tasks specific to each field also
reflect fundamental differences between these two types of data.

In contrast with tasks relying on labeled data, unsupervised tasks, in particular
generative tasks, are not evaluated with respect to a ground truth. To this end, a
variety of task evaluation methods have been implemented in both fields for such
generative tasks. In NLP, generative models are usually evaluated on benchmarks
with a variety of metrics (Celikyilmaz et al., 2021), such as BLEU-score (Papineni
et al., 2002) for machine translation or Semantic Textual Similarity (Agirre et al.,
2016) for text summarization. MIR generative models are usually evaluated through
user studies, taking the form of preference selection (Shu et al., 2024), ranking (von
Rütte et al., 2023) or scoring (Luo et al., 2024). To counterbalance this subjective
aspect, multiple quantitative music-related metrics have been proposed to evaluate
music generation (Yang and Lerch, 2020). These include pitch-related metrics (Wu
and Yang, 2023b), rhythm-related metrics (Wu and Yang, 2020) and harmony-related
metrics (Yeh et al., 2021). Inspired by the Fréchet inception distance in computer
vision (Heusel et al., 2017) which was later adapted to audio music with the Fréchet
audio distance (Kilgour et al., 2019), the Fréchet music distance (Retkowski et al.,
2025) has been proposed to evaluate the realisticness of generated music. It is
evaluated as a distance between distributions of reference and generated symbolic
music embeddings. The question of evaluating symbolic music generation without
user study is still a challenge: while the task of symbolic music generation from
the 2024 MIREX challenge does include objective metrics as a reference, the final
ranking of participants still relies on subjective metrics8.

5https://chat.openai.com
6https://suno.com/home
7https://www.udio.com/
8https://www.music-ir.org/mirex/wiki/2024:Symbolic_Music_Generation

https://chat.openai.com
https://suno.com/home
https://www.udio.com/
https://www.music-ir.org/mirex/wiki/2024:Symbolic_Music_Generation
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3.2.3 Unlabeled text and symbolic music datasets

In order to train models on these generative tasks from a self-supervised way, several
large unlabeled datasets of text and symbolic music have been proposed.

In NLP, such datasets are often compiled through web crawling (Wenzek et al.,
2019), and have been released for model training. These datasets may be unstruc-
tured, aggregating vast amounts of text from webpages9 or books (Bandy and Vincent,
2021), and can be used for general generation tasks such as infilling or text contin-
uation, or as pre-training datasets. Other datasets are task-specific, such as those
for translation – where bilingual texts are collected10 – or for question answering
which include texts, questions and corresponding answers (Rajpurkar et al., 2016).
For some languages, text datasets sizes typically range from several of gigabytes to
terabytes (Liu et al., 2024). In comparison, symbolic music dataset are much smaller.

MIR in contrast, features multiple symbolic music file formats which can be used
to encode music in different manners. Sheet music can be distributed under text
formats, with ABC or plaine-and-easie11 which are more suitable for monophonic
tunes, or **kern12 and lilypond13 which aims at also describing score layout. Struc-
tured format, in particular through markup language, are also often used such as
musicXML or MEI (Music Encoding Initiative)14. For particular instruments or type
of music, specific format can be used, such as gabc15 derived from ABC notations
for Gregorian chants or gpif for guitar tablatures (Cournut et al., 2021), based on a
markup language. However, symbolic music datasets are most often shared under
a MIDI (Musical Instrument Digital Interface) format, which originally encodes a
musical performance, more than its sheet music. For example, score layout or some
musical characteristics such as enharmonic pitches are not encoded in the original
format.

These include large crawled MIDI collections such as LakhMIDI (Raffel, 2016)
or MetaMIDI Dataset (Ens and Pasquier, 2021) later extended with the GigaMIDI
Dataset (Lee et al., 2025). Beyond these general-purpose music datasets, some can
be specific to music styles or instrumentations, focusing on orchestral music (Liu
et al., 2022), piano music (Kong et al., 2020), chorales (Boulanger-Lewandowski et al.,
2012), Japanese vocal music (Nakamura et al., 2023), folk tunes (Schaffrath, 1995) or
pop music (Wang et al., 2020a). Other datasets with specific music representations,
such as guitar tablatures (Sarmento et al., 2021) or chords-only (de Berardinis et al.,
2023), have been built for non-MIDI generative systems. Datasets linking symbolic
music and other types of data are built for multimodal models for audio-MIDI

9https://commoncrawl.org/
10https://huggingface.co/wmt
11https://www.iaml.info/plaine-easie-code
12https://www.humdrum.org/
13https://lilypond.org/index.html
14https://music-encoding.org/
15https://gregorio-project.github.io/gabc/

https://commoncrawl.org/
https://huggingface.co/wmt
https://www.iaml.info/plaine-easie-code
https://www.humdrum.org/
https://lilypond.org/index.html
https://music-encoding.org/
https://gregorio-project.github.io/gabc/


32 CHAPTER 3. MIR AND NLP TASKS: SIMILARITIES AND SPECIFICITIES

alignment gathering MIDI and their corresponding audio such as the MAESTRO
dataset (Hawthorne et al., 2019) or more recently, text-to-MIDI (Melechovsky et al.,
2024) and video-to-MIDI (Cardoso et al., 2024). Such video and MIDI alignment can
also serve for specific tasks such as piano gesture analysis (Gan et al., 2025).

These datasets can also serve as a foundation for creating new ones, in particular
as training datasets for audio-to-MIDI models (Hawthorne et al., 2018). Given the
abundance of music audio compared to symbolic music, such models can be used to
build MIDI datasets from transcribed audio – examples include Aria-MIDI (Bradshaw
and Colton, 2025) for piano music and Pop1k7 (Hsiao et al., 2021) which gathers
piano transcription of pop songs. For a comprehensive overview of music generation
datasets, refer to Ji et al. (2023) or on the ISMIR website16.

This chapter provided an overview of MIR tasks that share analogies with NLP
tasks. The similarities in these tasks partly motivates the use of NLP approaches
in MIR, but also the possibility for symbolic music and text to be represented as
sequences. These representations of music as sequential data are presented in the next
chapter.

16https://www.ismir.net/resources/datasets/

https://www.ismir.net/resources/datasets/
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Text data inherently follows a sequential structure composed of elements span-
ning from individual characters to full sentences. In contrast, representing musical
content as a sequence of homogeneous elements is not as straightforward. The
multiplicity of information included in a single note (pitch, duration, position, etc.)
and the common occurrences of simultaneous notes (polyphony, chords and melody,
etc.) make the problem more complex than with text. However, this sequential
representation is necessary for the musical data to be subsequently processed by
sequential models, which were initially designed to handle text data.

Naturally, other representations of symbolic music have been proposed to be pro-
cessed by other types of models. Piano rolls (Walder, 2016) were originally conceived
as matrix representations of music represented with time along the horizontal axis
and pitches along the vertical axis (Figure 4.2) and can be typically processed by
models brought from image processing studies. More recently, music has also been
explored as graph data (Jeong et al., 2019b; Karystinaios and Widmer, 2022) to be
processed by graph neural networks. Under this representation, notes are vertices
and relations between notes (same onset, consecutive notes, overlapping notes, ...)
are represented by edges.

35
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In the realm of NLP models applied to symbolic music, this chapter presents
and proposes a structured overview of the various methods that have been proposed
to represent music as sequences of elements. Appendix A gathers tables presenting
exhaustive descriptions of existing sequential representations of music.

4.1 Tokenization strategies

Tokenization refers to the process of representing complex content into a sequence
of elements for computational processing. In NLP, tokenization is the task of seg-
menting a sequence of atomic elements - characters - by grouping them together
into informative tokens (Mielke et al., 2021), such as subwords, words, or multiple-
word expressions. The rise of NLP models in MIR has naturally encouraged the
adoption of this term for music representations. Though, a musical token can take
various forms and represent diverse types of musical information (e.g. the pitch of a
note, its duration, a slice of a piano roll, . . . ). Therefore, we propose a taxonomy of
tokenization strategies in symbolic MIR represented in Figure 4.1.

Tokenization strategies

Event-based
tokenization

Composite tokens

Alphabet

Time-slice-based
tokenization

Elementary tokens

Grouping

Figure 4.1: Taxonomy of tokenizations for symbolic music. Tokens are either based on
regular time-slices or events. Among event-based tokenization strategies, tokens encode
various features of these events: composite (or multidimensional) tokens encapsulate all
these features in a single token, in contrast with elementary tokens where each musical
feature is processed one after the other.

We organize tokenization strategies within two classes: time-slice-based tokeniza-
tion and event-based tokenization. Indeed, time plays a special role in music since
the time position of notes fundamentally contributes to the conveyed information.
Musical events are commonly thought as occurring on an underlying isochronic
grid (Jackendoff, 2009) in which notes have rigorous timings annotated on sheet
music. Such exact timings can, however, be altered in a performance context where
musicians have the freedom to distort this time grid leading to expressive effects
such as rubato, accelerando, or ritardando. Therefore, representing time properties of
musical elements has led to multiple approaches (Briot et al., 2020, §4.8) including
representations based on regular time steps (Section 4.1.1) referred to as time-sliced-
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based tokenization, or driven by events occurring through time (Section 4.1.2)
referred to as event-based tokenization.

4.1.1 Time-slice-based tokenization

Dividing time at evenly spaced timings is a natural approach to representing music
since musical elements such as note onset or durations are notated on scores with
specific and regular timings according to particular rhythms. The approaches de-
scribed in the following section represent symbolic music as a sequence of fixed-time
interval tokens.

����� ��

C4

D4

E4
F4

G4

A4

B4
C5

Musical time

Figure 4.2: Time-sliced based tokenization: piano roll representation. The vertical axis
represents the pitches and the horizontal axis represents the time.

DeepBach (Hadjeres et al., 2017) is a model that aims to generate 4-part chorales,
for which time is evenly divided at the level of 16th notes. As the number of simulta-
neous notes is upper-bounded in 4-part chorales, a time step can be represented as a
vector containing 4 pitches. In the same way, a concept of “musical words” defined
by slices of three beats is proposed (Herremans and Chuan, 2017; Chuan et al., 2020)
to model musical context and semantic relationships in polyphonic music. Beyond
pitches, this time-slice representation has also shown to be adapted to the context of
drum music (Zhang and Callison-Burch, 2023).

More generally, these representations can be seen as specific cases of piano rolls
(Figure 4.2). A piano roll representation relies on a matrix in which the horizontal
axis represents time, and pitches are encoded along the vertical axis, with possible
additional characteristics such as velocity as a third dimension. Piano rolls are usually
portrayed as an alternative to sequential representations by using matrices. However,
a piano roll can be converted into a sequential format by considering it as a sequence
of piano roll slices - i.e. fixed-size multi-hot vectors representing pitches quantized
at a specific duration. In particular, these piano roll slices do not directly capture
note onsets: for example, in Figure 4.2, only considering the piano roll without
its score transcription, the top C5 could represent either a sustained quarter note
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or repeated eighth or sixteenth notes. To address this ambiguity, models based on
time-slice sequences often add an extra “replay matrix” (Mao et al., 2018) indicating
whether a note in the piano roll corresponds to an onset or a continuation. The actual
tokens in these serialized piano rolls can represent a window of slices (Chen and
Su, 2019) or a full musical bar (Brunner et al., 2018). From a musical viewpoint,
such time-sliced-based tokenization is sometimes required by the task, like Roman
Numeral Analysis (Nápoles López et al., 2021; Sailor, 2024), where single notes can be
annotated differently through time. This tokenization will be given a more detailed
description in Chapter 7, in which we present our work on model explainability for
a functional harmony analysis system.

This piano roll representation for music contrasts with text. It is particularly
well suited for capturing simultaneous events – i.e. musical polyphony, which has no
direct equivalent in language – unlike the sequential representations discussed in
the following, which induce an artificial sequentiality on simultaneous events.

4.1.2 Event-based tokenization

Unlike time-slice-based tokenization in which tokens are triggered at constant time
steps, event-based tokenization strategies involve tokens occurring only when a specific
event takes place (e.g. a note being played, the start of a bar, etc.). Most tokenization
strategies have shifted towards this event-centric approach, helped by the large
amount of available MIDI data. The MIDI protocol was first developed to handle
communication between music software and hardware. The serial transmission of
MIDI messages provides a natural way to encode music as sequences of events. The
large adoption of this format in the music community has led to the availability
of multiple datasets (Ji et al., 2023) which are essential for training deep learning
models.
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Figure 4.3: Artificial sequentiality possibly introduced in a tokenization strategy (e.g. inspired
from Structured (Hadjeres and Crestel, 2021)). A note is characterized by musical features
such as pitch, duration, velocity, and time-shift. The sequentiality of the blocks (black
dashed) follows the temporality, but the order of the inner musical features is arbitrary. The
sequentiality of these blocks can even be artificial for simultaneous events (red dotted).
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In contrast with characters in text, tokens derived from a MIDI-derived tokeniza-
tion can have various types, reflecting the multiple features of musical notes such
as duration, pitch, or velocity. Since these features characterize a single temporal
event, representing such features sequentially may necessitate introducing an “artifi-
cial” sequentiality on top of the temporal sequentiality as illustrated in Figure 4.3.
This sequentiality is even more artificial when representing simultaneous notes by
consecutive tokens.

We propose to classify these event-based tokenization strategies into two main
classes that we refer to as elementary tokens (Section 4.1.2.1, Table A.1) and compos-
ite tokens (Section 4.1.2.2, Table A.2). Sequences of elementary tokens explicitly
integrate this artificial sequentiality where each token is a single musical feature.
This can possibly result in two adjacent tokens describing the same temporal event
(e.g. the pitch of a note followed by its duration). On the contrary, sequences of
composite tokens partly bypass this artificial sequentiality by considering tokens as
objects aggregating all the musical features describing a temporal event in a unique
“super-token”.

4.1.2.1 Elementary tokens: music as sequence of individual features

The constitutive elements of a sequence composed of musical elementary tokens
can be described at two levels: the choices of an initial alphabet of atomic elements
encoding various musical features and a grouping of these atomic elements into
higher level elements, presumably more expressive.

Alphabet – In text, tokens frequently denote words or subwords, which themselves
are combinations of smaller elements – characters. In symbolic music, tokens most
often refer to the atomic elements of the sequence that constitute what we refer to as
an alphabet. This alphabet can be composed of a wide range of entities, such as chord
labels, notes, inner characteristics of a note (e.g. pitch, duration, etc.), or structural
events such as beat position or bars. Thus, choosing an alphabet implies choosing a
level at which to describe music and a set of attributes to represent it.

Grouping strategy – Atomic elements can be grouped together to form more infor-
mative elements. These groupings can be established using fixed-size segmentations,
statistically derived groupings, or expert-defined rules. In text, atomic elements
(characters) are directly merged together to constitute tokens (words or subwords)
leading to a vocabulary of increasing size. Similarly, music atomic elements can be
grouped together to enrich the vocabulary with more informative tokens.

In the following, we present various developed strategies of alphabets and group-
ings for symbolic music tokenization. An extensive list of tokenization strategies
based on elementary tokens is presented in Table A.1. Explanations of musical con-
cepts related to their computational representations are also presented in Table A.3.
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(a) Performance-based tokenization: MIDI-like (Huang et al., 2019).
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(b) Score-based tokenization: REMI (Huang and Yang, 2020).
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(c) Instrument-specific tokenization: DadaGP (Sarmento et al., 2021).
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Figure 4.4: Elementary tokens examples. (a) Time can be encoded following a performance-
based paradigm, where music is represented as successive performance events (<note-on>,
<note-off>). (b) Instead, time can be encoded following a score-based paradigm, with music
is organized along a metrical time grid structured by bars and beats. (c) Event-based tok-
enization can also be specific to particular instrumental notations, such as guitar tablatures.

Building an alphabet of atomic elements to encode music – Symbolic music al-
phabets can rely on two paradigms: “MIDI Performance” or a “MIDI Score” (Oore
et al., 2018). The first one is often a human performance encoded into the MIDI
protocol or directly recorded with a MIDI keyboard while the second one is typically
a MIDI file converted from a sheet music format (musicXML, kern...) which follows a
strict metrical grid. Performance data includes velocity and performance variations
such as local tempo or played dynamics whereas scores include information such as
musical timings and enharmonics1. In the following, we follow this distinction to
organize existing alphabets for symbolic music tokenization.

On the one hand, performance-based tokenization focuses on encoding music as
sequences of performance events, nearly translating the gesture of an on-stage per-
former. The MIDI-like tokenization (Huang et al., 2019), represented in Figure 4.4a,
follows MIDI events from the basic MIDI protocol, including a vocabulary of 4 event
types: <note_on>, <note_off>, <time_shift>, and <velocity>. <time_shift> tokens
are typically expressed in absolute timings in milliseconds. This tokenization can be
adapted for monophonic melodies (Roberts et al., 2018) or a polyphonic ensemble

1Enharmonic notes refer to two notes which produce the same sound but are called differently
e.g. G♯ and A♭.
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with a fixed number of instruments (Donahue et al., 2019) by having <note_on/off>
tokens specific to each instrument. TSD (Time-Shift-Duration) (Fradet et al., 2023a)
adapts the MIDI-like tokenization, using <duration> and <time_shift> to replace
pairs of <note_on/off>. The Structured MIDI encoding (Hadjeres and Crestel, 2021)
is similar to TSD but enforces the order of tokens describing a same event. This
avoids syntax errors in the context of live music generation and improves token se-
quence consistency by implicitly reducing the vocabulary size at each generation step.
Finally, Pertok (Lenz and Mani, 2024) encodes performance timing irregularities
using <micro_time> tokens. This allows for a balance between high level temporal
information encoded via the traditional <duration> tokens, and the expressivity of a
human performance conveyed via these <micro_time> tokens.

In contrast, score-based tokenizations describe music as a time-structured system
based on multiple discretization levels of time, such as sub-beats, beats, or bars
linked to common note values in music notation (e.g. whole, half, quarter, eight
note, ...). Prior to MIDI-based tokenization, early sequential representations of music
rely on the various score dimensions (Conklin and Witten, 1995). These represen-
tations, called viewpoints, can encode properties of the note itself, such as its pitch
or its position within a bar, or relations between successive events, such as melodic
contours or lengths of the musical phrases. A token is thus a vector constituted of
multiple viewpoints which describes each event, in particular each note. REMI (Re-
vamped MIDI-derived events) (Huang and Yang, 2020), represented in represented
in Figure 4.4b, is derived from a MIDI-based tokenization but employs a set of score-
related elements to tokenize musical data, in particular <bar>, <position> (i.e. beat
position within a bar) and <duration> both being expressed in musical time instead
of absolute timings. The use of such time encoding appears to bring consistency
in rhythm. Multiple extensions of REMI have been implemented. Regarding the
encoding of the pitch information, developments based on pitch classes and octaves
tokens instead of raw MIDI numbers have been proposed for both analysis (Liang
et al., 2020a) and generative tasks (Li et al., 2023c). REMI has also been enriched with
additional tokens to include metadata (Lee et al., 2022), musical features (von Rütte
et al., 2023; Shih et al., 2023), control tokens (Guo et al., 2022), hand positioning for
piano music (Gover and Zewi, 2022) or track information (Wu and Yang, 2023b).

In addition, some specificities related to the instrument or the type of music data
may prompt the need for adjustments to the tokenization strategy. Tokenization
strategies for guitar tablatures have been proposed for generation tasks directly in
the tablature space (Chen et al., 2020; Sarmento et al., 2021) by adding guitar-specific
tokens, such as a combination of <string> and <fret> instead of traditional MIDI
numbers, as shown in Figure 4.4c.

Moreover, unlike text in language, which consists of a unique stream of words,
the challenge of encoding multi-track music (i.e. multi-instrument, with potentially
polyphonic tracks) involves identifying a way to represent simultaneous events as
a single sequence of tokens. The representations Multi-Track (Ens and Pasquier,
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(a) Horizontal and vertical parsing seen on a score.
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(b) REMI+ with horizontal parsing (track-first).
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(c) REMI+ with vertical parsing (beat-first).
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Figure 4.5: Multi-track parsing. In order to represent multi-track music as a unidimensional
sequence, the multiple tracks can be parsed either horizontally (left) – i.e. each track is
parsed and concatenated one after each other – or vertically (right) – i.e. the music is parsed
time-wise, and each beat is concatenated one after each other. A horizontal parsing promotes
melodic patterns, while a vertical parsing promotes a “harmonic” reading of the music. A
practical example of such parsing paradigm is shown using the REMI+ tokenization (von
Rütte et al., 2023).

2020), the MMR (Multi-track Multi-instrument Repeatable) representation (Liu et al.,
2022), REMI+ (von Rütte et al., 2023) deal with this issue by adding a track-related
token in the alphabet. However, MMR and REMI+ interleave the different tracks to
represent the multiple tracks into one sequence. Instead, Multi-Track concatenates
all the tracks horizontally to get this single sequence. In other words, comparing
these multi-track tokenizations as shown in Figure 4.5, Multi-Track has a horizontal
reading of the score by concatenating single-instrument tracks, while MMR and
REMI+ have a vertical reading of the score by firstly concatenating simultaneous bars
or events from multiple tracks.

Beyond MIDI-derived tokenizations, the ABC notation has also been used as
a direct way of encoding monophonic scores (Sturm et al., 2016) where tokens
are considered to be text characters. Basic NLP models can be simply trained on
these textual data for generation (Sturm et al., 2016). With the breakthrough of
efficient Large Language Models (LLMs) handling text, this representation has been
used for LLM-based text-to-music systems such as ChatMusician (Yuan et al., 2024),
MelodyT5 (Wu et al., 2024) or ComposerX (Deng et al., 2024a). As this notation has



CHAPTER 4. REPRESENTATIONS OF SYMBOLIC MUSIC AS SEQUENCES 43

been originally developed to encode monophonic music, multiple ways of adapting it
for multi-track music have been proposed. NotaGen (Wang et al., 2025) proposes an
interleaved ABC notation and MuPT (Qu et al., 2025) implements a “Synchronized
Multi-Track ABC Notation” (SMT-ABC): these representations groups bars between
particular labels (such as a line return for interleaved ABC notation or a ⟨|⟩ token for
SMT-ABC) between which all the voices are separated by an extra label.

Finally, a few approaches consider encoding music under their sheet music
notations, beyond their musical content only. Therefore, such must describe each
visual element of a score, including tokens for staffs, clefs, stem directions, or beam
properties (Suzuki, 2022). This approach is denoted as semantic tokens by Acosta
et al. (2022) who also explore further methods to encode sheet music. In particular,
in the same way as ABC notation, they leverage the textual format of MEI format
– derived from an XML format – to generate MEI tokens. In addition, they also
consider sheet music seen as visual data, either as sequences of image patches which
are equal size square subparts of the score, or as sequences of visual words where
each word correspond to a graphical symbol (e.g. a staff beginning, a treble clef, a
multi-measure rest sign, . . . ). In particular, this “visual words” vocabulary is drawn
from datasets of atomic score elements observed from optical music recognition
research (Calvo-Zaragoza and Rizo, 2018).

Grouping atomic elements for shorter sequences and more informative tokens –
When comparing text and music, textual sentences are often composed of hundreds
of characters or around a dozen words, which is an amount of tokens that models such
as Transformers can handle well. In contrast, musical sequences may be considerably
longer, possibly reaching several thousand event-based tokens even in a musical
phrase, due to various factors such as polyphony or multiple existing token types.
To address this complexity issue, two approaches can be considered: adapting the
model mechanisms to handle this type of data (developed further in Chapter 4) or
manipulating the representation of music in order to compress the sequence length
by grouping tokens together.

A textual n-gram (Jurafsky, 2000, Chap. 3) is a sequence of 𝑛 elements (characters,
words, etc.) grouped together based on a fixed number of elements to constitute a
token. N-grams have been one of the earliest representations of music borrowed
from NLP (Downie, 1999). However, while grouping characters is straightforward
for text data, musical n-grams can be of a diverse nature with groupings occurring
at multiple levels. Musical n-grams can be composed of note intervals or rhythm
ratios (Wołkowicz et al., 2008) or musical descriptors called “viewpoints” (Conklin
and Witten, 1995) that complement the description of music with characteristics
such as pitch contour or intervals. Instead of single notes, chord n-grams can
represent music through harmony (Ogihara and Li, 2008). This assumes a choice
regarding the restriction of the chord space, which instead, could have lead to a
huge vocabulary size when considering all the possible n-gram combinations. These
representations appear to be satisfactory for basic analysis tasks, such as composer
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or style classification. Skip-grams (Guthrie et al., 2006) are an improvement of
n-grams, allowing a skip of some elements when constructing the n-gram, and thus
extending the scope of the token within the sequence. Therefore, skip-grams can
be applied to music to model harmony (Sears et al., 2017) or to discover voice-
leading patterns (Sears and Widmer, 2021), confirming musicological observations
on harmonic progressions.

These musical n-grams also show statistical phenomena initially observed in text
data representations. Various laws such as the Heaps’ law or the Zipf’s law can be
observed with musical n-grams. The Heaps’ law states that the length of a text and
its inner vocabulary are linked by a power law: this phenomenon have also been
observed on music encoded as chroma2 vectors (Serra-Peralta et al., 2021), leading to
high-level conclusions regarding harmony in terms of vocabulary richness. Similarly,
the Zipf’s law states that the word frequencies follow a power decay in relation to
the rank of these words. This phenomenon also appears when transcribing music
into n-grams (Wołkowicz et al., 2008; Perotti and Billoni, 2020). This law implies
defining or choosing what a musical word is. According to (Perotti and Billoni, 2020),
a musical Zipf’s law is therefore obtained when the musical word (or “zipfian unit”)
is chosen as a combination of notes and chords instead of single notes.

Musically-informed groupings can be derived from the musical structure of a
sequence. The CLaMP model (Wu et al., 2023), which is based on the ABC notation
that includes pipe characters to represent bars, considers a bar-based grouping.
Though, such musically-informed groupings are little studied because note-level
groupings are more suited as composite tokens (Section 4.1.2.2), and higher-level
structures, such as motifs or phrases, are often not well defined.

Finally, NLP studies have developed subword tokenization methods (Mielke et al.,
2021) where a vocabulary of subwords is statistically learned on a training cor-
pus. These include Byte-Pair Encoding (BPE) (Gage, 1994; Sennrich et al., 2016),
WordPiece (Schuster and Nakajima, 2012) or UnigramLM (Kudo, 2018). Some
of them have been adapted for music to create musical subwords as tokens. The
BPE algorithm is adapted for orchestral data (Liu et al., 2022) by exploiting the
invariance of note order within a chord, to shorten sequence lengths. More than
a simple tool for shortening sequences, BPE has also been studied for its specific
effects on musical data. Multiple studies applied it on multiple encodings in order to
examine how training Transformer models with input reduced by BPE affects both
generation and analysis tasks. Although BPE builds a more structured embedding
space (Fradet et al., 2023a), experiments studying the impact of BPE in music analysis
tasks do not show a significant increase in performance (Zhang et al., 2023), unlike
BPE applied to text (Sennrich et al., 2016). In a more restricted musical context,
Mel2Word (Park et al., 2024) implements BPE with monophonic tunes and enables
the retrieval of style-specific motifs. Finally, UnigramLM subword tokenization is
also specifically evaluated on music generation, applied to score-based music and

2A chroma is a pitch class i.e. C, C♯, D, . . . , B
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Figure 4.6: Byte-Pair Encoding (BPE) algorithm on text data. The process starts with a
vocabulary composed of all characters occurring in the corpus considered as initial tokens.
At step 1, the most occurring pair of tokens is (<a>, <l>) which occurs 5 times: they are
merged and <al> is added to the vocabulary. At step 2, a new token <le> is added to the
vocabulary. At step 3, a single character can be merged with an already created token (<c>,
<al>) creating a new token <cal> in the vocabulary. The algorithm then continues for a
number of merges.

guitar tablatures (Kumar and Sarmento, 2023). Their findings indicate that both ap-
proaches contribute to improved data representation, enhance the structural quality
of generated music, and enable the generation of longer sequences.

In this thesis, we further explore technical aspects of these event-based tokeniza-
tion strategies (Chapter 6) to improve the expressiveness of these representations.
Regarding the alphabet choice, we study the impact of choosing interval tokens in-
stead of absolute pitch for pitch encoding on analysis tasks. In addition, in terms of
grouping, we then analyze the different behaviors of BPE in text and music, and we
focus on their impact on analysis tasks involving monophonic or polyphonic music.

4.1.2.2 Composite tokens: music as sequence of feature combinations

While sequences of elementary tokens need to introduce an artificial sequentiality
by ordering musical features that describe a single event, composite tokens encap-
sulate the entirety of a temporal event by combining all its musical features into a
single super-token. Considering a single token as an agglomerate of multiple musical
features also helps shortening sequence lengths, but may also involve model adapta-
tions to handle this particular vocabulary. The choice of the type of super-tokens,
the musical features encapsulated within them, and the method used to construct
the vector representing each super-token are the key variables in the approaches
reviewed below. Figure 4.7 gives examples of possible composite tokenizations and
Table A.2 presents an exhaustive list of approaches relying this type of tokenization.

On the one hand, homogeneous super-tokens denote a representation where each
super-token contains the same set of features no matter the nature of the event
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(a) Homogeneous composite tokens: Octuple (Zeng et al., 2021).
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(b) Family-based composite tokens: Compound Word (Hsiao et al., 2021).
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Figure 4.7: Composite tokens examples. These tokens can be homogeneous (a), where
each token consistently encapsulates the same set of elements. In contrast, family-based
tokenizations (b) distinguish tokens derived from note events or structural events.

it describes. The representation developed by Zixun et al. (2021) is based on the
concatenation of multiple one-hot vectors describing pitch, duration, chords, and
bar. Octuple (Zeng et al., 2021) is instead based on the embedding of 8 musical
features (i.e. time signature, tempo, bar, position, instrument, pitch, duration and
velocity) which are concatenated to form the single vector considered as token
representing a single note. Such homogeneous representations are also used by
PiRhDy (Liang et al., 2020a) encoding pitch classes and octave instead of MIDI
value, and MMT (Dong et al., 2023) for multi-track music. Instead of vectors,
MuseBERT (Wang and Xia, 2021) embeds matrices constructed from onsets, pitches,
and durations to describe both musical attributes with their relations. Beyond notes,
the Chordinator model (Dalmazzo et al., 2024) encodes chords described by a root, a
nature, extensions, and a set of notes composing the chord.

On the other hand, methods separating events by families have been developed
to highlight the distinction between note events and structural events such as the
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beginning of a bar. For polyphonic music, MuMIDI (Ren et al., 2020) represents a
token as a sum of the embeddings of bars, position, and tempo, and note characteris-
tics (i.e. pitch, duration, velocity) are added for note events. Similarly, Compound
Word (Hsiao et al., 2021) gathers tokens into two families: event-related or note-
related and concatenates these embedded atomic elements to build the token. It
has also been adapted for a task of drum accompaniment generation (Makris et al.,
2022). This representation is also enhanced by Di et al. (2021) in the context of
video-to-music, by incorporating a token family related to rhythm, encapsulating
rhythm density and strength. Unsupervised Compound Word (Tian et al., 2024) is
based on the original Compound Word tokenization and includes Byte-Pair Encoding
which learns the atomic element groupings instead of relying on predefined fami-
lies resulting in variable-length composite tokens. REMI_Track (Luo et al., 2024)
improves REMI+ and also combines composite tokens and BPE. Tokens are defined
as 5-long vectors, with note-related elements of a token (pitch, velocity, duration)
being possibly grouped together under a BPE-element, which has shown to improve
inference efficiency when generating long sequences.

4.2 Comparing tokenization strategies

Various tokenization methods naturally lead to various performance depending on
tasks or data. In NLP, different tokenizers, which initially aim at segmenting text,
can result in different vocabularies, so that they can result in unequal performance
on various tasks or languages (Domingo et al., 2023). The choice of the tokeniza-
tion strategy is even more fundamental in non-space-segmented languages such as
Korean (Park et al., 2020). Few studies have conducted such comparisons between
tokenization strategies in MIR contexts.

Multiple strategies for pitch (pitch-class vs. absolute) and time grid (time reso-
lution) encodings are compared in the context of monophonic music generation (Li
et al., 2023b). Using a set of objective metrics, it appears that pitch representations
using pitch class and octave outperform MIDI-event representations and higher tem-
poral resolution can contribute to the performance of the model, while being more
inclined to overfit, resulting in worse beat- or bar-level modeling. Fradet et al. (2023b)
focus specifically on time encoding by comparing note positioning (<time-shift> vs.
<bar> +<position>) and duration encoding (<note-on> +<note-off> vs. <duration>)
on generative, classification, and representation tasks. While being highly dependent
on the task, explicit time information in tokenization strategies appears to be helpful.

Beyond only considering tokenization, a comparison between matrix, graph, and
sequence representations of symbolic music is performed on analysis tasks (Zhang
et al., 2023). When examining sequence representations, non-embedding-grouping
tokenization strategies such as REMI or MIDI-like appear to provide better perfor-
mance than embedding grouping strategies in the context of analysis tasks. When
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comparing data representation modalities, matrix and sequence representations
appear to perform better on MIDI performance compared to score data.

These studies most often focus on how tokenization affects model performance on
downstream tasks. However, the choice of tokenization also influences the resulting
sequence length, which in turn affects the suitability of different models, depending
on their capacity to process longer or shorter sequences, as well as the data used to
train them. Consequently, improving the expressiveness of tokenization strategies is
a direction we have chosen in one of our contributions, as detailed in Chapter 6.

More technically, multiple libraries have been developed to process symbolic
music data under sheet music formats, such as musicXML or **kern. Among them,
Music21 (Cuthbert and Ariza, 2010) and Partitura (Cancino-Chacón et al., 2022)
offer object-oriented data structures for representing symbolic music, which are less
inherently adapted to direct sequential processing. For sequential representations,
multiple libraries are available to handle MIDI data, such as Pretty MIDI (Raffel and
Ellis, 2014) or MidiToolkit3, with the main difference being the first one handles time
in seconds while the former considers MIDI ticks instead. These librairies allow for
sequential processing but does not extend beyond the MIDI-like tokenization strategy.
More recently, the MidiTok Python package (Fradet et al., 2021) has been developed
to provide a consistent interface for handling multiple tokenization strategies. It
currently supports around a dozen encoding methods, including some of those
described above, and offers various tools designed to manipulate sequential symbolic
music data, such as data augmentation or BPE. Multiple other tokenizers derive
from this library, including a musicXML tokenizer (Zhang et al., 2023) or a component
integrated into a processing pipeline coupled with the HuggingFace library (Kumar
and Sarmento, 2023), initially developed to handle text tokenization and models.
Similarly, Musicaiz (Hernandez-Olivan and Beltran, 2023) offers a tokenization
framework, with extensive visualization, generation, and analysis frameworks for
symbolic music.

These tools allow for a easy manipulation of tokenization strategies, aiming at
comparing them, starting with a simple comparison of musical token sequence
sizes (Fradet et al., 2023a). However, objective and unbiased studies aiming at
evaluating the choice of a tokenization in specific tasks still lack and represent a
main future direction for the MIR community (Section 9.1).

4.3 Embedding music tokens for model processing

The previous sections describe music encoded as sequential elements and operations
that can be applied to them while keeping their high-level musical meaning. When
used as inputs of most machine learning models, these elements need to be embedded

3https://github.com/YatingMusic/miditoolkit

https://github.com/YatingMusic/miditoolkit
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or converted into numerical values so that the model can process them. Text, sub-
words, words, or documents need to be projected into a particular space in order
to be processed (Li and Yang, 2018) leading to multiple distributional vector space
models and embedding methods.

Earliest word representations simply relied on basic one-hot vectors, each with a
length equivalent to the vocabulary size. A document is represented by summing
all these word vectors, leading to a co-occurrence counts vector, also called Bag-
of-words (BOW) (Jurafsky, 2000, Chap. 4). This representation is improved by
Term Frequency-Inverse Document Frequency (TF-IDF) (Jurafsky, 2000, Chap. 6)
that takes into account the total number of documents in which a word appears. In
symbolic music, such BOWs or TF-IDFs have been implemented for music similarity
analysis (Wołkowicz and Kešelj, 2012), mode classification in Gregorian chant (Cor-
nelissen et al., 2020), Chinese folk music clustering (Zhang and Jiang, 2021), or
guitar chord difficulty prediction (Vásquez et al., 2023).

However, these approaches do not capture any sequential information and the
resulting space is often sparse, preventing the ability to capture possible proximity
between musical elements. Therefore, multiple methods have been developed in the
NLP field aiming at representing words as vectors in a dense and continuous space
including static and contextual embeddings.

(a) Skip-gram.
ProjectionInput Output

𝑤𝑡

𝑤𝑡−2

𝑤𝑡−1

𝑤𝑡+1

𝑤𝑡+2

(b) Continuous bag-of-words (CBOW).
ProjectionInput Output

𝑤𝑡

𝑤𝑡−2

𝑤𝑡−1

𝑤𝑡+1

𝑤𝑡+2

Figure 4.8: Word2Vec training paradigms in text (Mikolov et al., 2013). Word embeddings
can be learned following a (a) skip-gram approach, which predicts surrounding words given
a single word, or a (b) CBOW approach, which predicts a single word given a surrounding
context.

Static embeddings assume that each word can be encoded using the same vector
regardless of the surrounding context in which the word occurs. Word2Vec (Mikolov
et al., 2013) is based on a shallow neural network that builds such static embeddings.
This model is often composed of only one hidden layer and is trained to learn
word associations. As represented in Figure 4.8, word embeddings can be learned
following two paradigms: skip-gram, which predicts surrounding words given a
target word, and continuous bag-of-words (CBOW), which predicts a target word
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from its surrounding context. The model learns vector representations where words
with similar occurrence contexts are placed close together in the vector space. This
method has been adapted for music, implicitly leading to multiple interpretations of
the definition of a “musical word”, including chords or musical phrases.

Multiple chord-based Word2Vec have been developed (Madjiheurem et al., 2016;
Huang et al., 2016). Such chord embeddings exhibit musical relations (e.g. the circle
of fifths), and are evaluated on downstream tasks like chord prediction and composer
classification (Lahnala et al., 2021). PitchClass2Vec (Lazzari et al., 2023) embeds
chords with Fasttext (Bojanowski et al., 2017) which relies on subwords instead of
words. In particular, instead of embedding the whole set of pitches constituting a
chord, Pitchclass2vec decomposes the chord as intervals in the same way as Fasttext
breaks words into n-grams.

An alternative approach, as opposed to embedded chords, is to consider words as
temporal chunks of music. Melody2Vec (Hirai and Sawada, 2019) uses Word2Vec
on monophonic melodies by assuming such words as musical phrases segmented
by GTTM rules (Lerdahl and Jackendoff, 1996). Word2Vec has also been adapted
for polyphonic music (Herremans and Chuan, 2017), by considering words as equal-
length and non-overlapping slices of polyphonic music. Visualizing these embed-
dings shows a structure and organization of the space that follows the rules of tonal
harmony (Chuan et al., 2020). Considering distance between theses slices allows for
a task of melody replacement by exchanging slices of an original piece by a close
slice in the embedding space.

Unlike static embeddings, contextual embeddings represent a same word with
different vectors depending on the context in which the word occurs because of
the polysemous nature of words. The same word can indeed appear in multiple
contexts, carrying significantly different meanings (e.g. “bank” can refer to a financial
institution or as the side of a river). Although polysemy and semantics are not directly
applicable in music, these contextual embeddings can be useful for symbolic music
because the context in which a note appear is fundamental, for instance in functional
harmony (i.e. where chords are identified by their function relative to an overall
tonality).

Technically, contextual embeddings are built concurrently with model training,
such as recurrent or attention-based models described in Chapter 5. Yet, while
analyses of learned contextual embeddings are numerous in NLP (Liu et al., 2020),
only very few studies have specifically observed the contextual aspect of such em-
beddings when applied to symbolic music. Such contextual embeddings have been
analyzed from BERT embeddings (Han et al., 2023) or from an LSTM model (Garcia-
Valencia, 2020). In the same way as text embedding spaces can show semantic
relations (Wiedemann et al., 2019), its resulting embedding space notably shows
musical characteristics such as interval relations between pitches or a space structure
based showing alterations and natural pitches. Fradet et al. (2023a) has shown that
the learned contextual embedding space from BERT is more structured than the one
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learned from GPT-2. Musical context can also be defined by the relationship between
simultaneous elements, extending beyond the typical temporal context encoded by
classic contextual embeddings. PiRhDy embeddings (Liang et al., 2020a) encode
such musical-specific context encapsulating melodic and harmonic contexts.

The choice of a tokenization strategy followed by an embedding method can sig-
nificantly impact how they are processed by the model performing the task. Therefore,
beyond the developments of representations of music as sequence, the widespread
adoption of NLP methods in symbolic MIR is primarily motivated by the apparent
effectiveness of these models, such as Transformers, to process text data.
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In order to perform the described tasks in Chapter 3, symbolic music encoded
into a chosen representation (Chapter 4) is processed by models. This chapter reviews
such models that have been borrowed or inspired from NLP and adapted to address
MIR tasks.

This transfer primarily arises from the temporal nature of music, which facilitates
its representation as sequences of elements, thus facilitating its processing by NLP-
based models, which are mostly data-driven. Historically, shallow machine learning
models were prominent for many years in NLP. A shift from shallow models to deep
learning models began in the 1990s. In particular models based on recurrent cells,
like Recurrent Neural Networks (RNNs), became widely popular for NLP tasks. This
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trend based on deep learning models continued with the breakthrough of attention-
based models in the mid-2010s. MIR studies also followed these trends, adapting
these models to symbolic music in various ways.

In this chapter, we organize the overview of NLP models for MIR by following a
historical timeline, starting with rule-based and shallow models (Section 5.1) and
sequential models, particularly recurrent models (Section 5.2). A substantial part is
then dedicated to attention-based models (Section 5.3), which currently represent
the state of the art in a variety of MIR tasks. These attention-based models are
examined through multiple lenses, including their training paradigms, architecture
designs, and the internal mechanisms originally developed for language and adapted
to symbolic music.

5.1 Shallow models

Prior to the widespread adoption of data-driven methods, natural language mod-
eling was mostly addressed by rule-based systems, such as formal grammars. A
formal grammar is a set of rules that defines the syntactic structure of sentences
in a language, specifying how words and phrases can be combined to form gram-
matically correct sentences. They are used in text for syntactic parsing or semantic
analysis such as dependency parsing, representing text as tree structures. Musical
grammars (Roads and Wieneke, 1979) have also been formalized, in particular based
on harmony, for tasks such as jazz chord analysis (Steedman, 1984). Generative
grammars (Chomsky, 1957), aiming at generating sentences based on rules, have
also been applied in music, in particular with GTTM (Lerdahl and Jackendoff, 1996).

Such grammars are often used in conjunction with shallow sequential models.
Hidden Markov Models (HMMs) and Conditional Random Fields (CRFs) are
sequential models that were applied to NLP tasks much earlier than symbolic music.
HMMs rely on the assumption that each observed element of a sequence is the result
of a hidden process with the Markov property (short span dependencies). As a gener-
alization of HMMs, CRFs are discriminative models that can impose dependencies on
arbitrary elements of the sequence. In NLP, HMMs and CRFs have been implemented
for part-of-speech tagging (Kupiec, 1992), named entity recognition (McCallum and
Li, 2003) or text classification (Frasconi et al., 2002). These models have then been
widely used in early MIR studies for various symbolic music tasks such as style
classification (Vercoe, 2001), melody prediction (Sentürk and Chordia, 2011), har-
monization (Groves, 2013), generation (Van Der Merwe and Schulze, 2011), chord
recognition (Masada and Bunescu, 2017) or key detection (Nápoles López et al.,
2019).

Neural networks, in particular deep neural networks, have since demonstrated
greater performances, notably due to the increase of available computational power
that enable the processing of large datasets for training more complex data-driven
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models. This leads to architectures based on sequential neural networks that offer an
alternative way of modeling time and therefore handling sequential data.

5.2 Sequential neural models

As described in Chapter 4, symbolic music can be encoded using sequential represen-
tations. Therefore, as sequential text representations can be processed by sequential
models, symbolic music can likewise be processed by similar models to perform
particular tasks. Sequential models are typically based on neural networks (Sec-
tion 5.2.1) and are adapted with recurrent mechanisms (Section 5.2.2) in order to
handle sequential inputs so that each element of the input is successively processed
while incorporating information from previous elements. An exhaustive summary of
such sequential models is presented in Table B.1.

5.2.1 Neural networks

Artificial neural networks are a class of machine learning objects designed to approxi-
mate a function 𝑓 , which maps an 𝑥 into an output 𝑦 = 𝑓 (𝑥), in a data-driven manner
given a large set of couples (𝑥, 𝑦). Historically, these artificial neural networks take
inspiration from human neural systems, modeled as sets of neurons (McCulloch and
Pitts, 1943). Each neuron is characterized by a set of weights [𝑤1, . . . , 𝑤𝑛], a bias
𝑏, and a non-linear activation function 𝜎(·). Given an input [𝑥1, . . . , 𝑥𝑛], a neuron
processes this input to produce an output 𝑧 following:

𝑧 = 𝜎

(
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏
)

These neurons can be stacked into interconnected layers, organized into input
layers, hidden layers and output layers. The number of neurons per layer is part of
the model’s architectural design, or can also be determined by the nature of the task
– for example, a 𝑛-class classification task implies 𝑛 neurons in the output layer, or a
unidimensional regression task typically involves a single output neuron. The entire
network gathering these layers is called a fully connected network (Figure 5.1). The
number of layers can then determine whether the network can be considered as a
deep neural network.

As presented above, the primary objective of the entire network is to approximate
a target function. To achieve this, it must be trained on datasets containing a large
number of input-output pairs, allowing the network to learn the mapping from
inputs to their corresponding expected outputs. To this end, the model is trained
to minimize a loss function, which quantifies the difference between the model’s



56 CHAPTER 5. NLP-BASED MODELS FOR SYMBOLIC MUSIC PROCESSING

Input
layer
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Figure 5.1: Full connected neural network composed of a 4-neuron input layer, three hidden
layers and a 2-neuron output layer.

predicted outputs for a given input and the corresponding ground truth from the
data. Typically, such loss function can be chosen as a mean squared error for a
regression task, or a cross-entropy in the case of classification tasks.

The parameters (i.e. weights and biases) of the network are optimized to mini-
mized this loss function 𝐿 through back-propagation using gradient descent to update
the model’s parameters (Rumelhart et al., 1986). More formally, given a weight 𝑤
and a chosen hyperparameter 𝜂, called learning rate, this weight can be updated
following:

𝑤 ≔ 𝑤 − 𝜂 · 𝜕𝐿
𝜕𝑤

This process can be repeated for each input-output pair from the datasets. This
can then be repeated for a certain number of iterations, called epochs. However,
this training process can lead to overfitting (i.e. a model learns the training data too
precisely, including its noise and outliers, leading to poor generalization on unseen
data.). Thus, the data is typically divided into a training set and a validation set, and
possibly a test set. The validation and test sets are excluded from the training data:
the validation set is used to assess the model’s performance on unseen data during
training and helps prevent overfitting, while the test set is used to evaluate the final
and fully trained model. Further techniques can improve the model’s training, such
as regularization (Krogh and Hertz, 1991), dropout (Srivastava et al., 2014), batch
normalization (Ioffe and Szegedy, 2015), early stopping, or data augmentation.

Several classes of artificial neural networks have been implemented, such as
convolutional neural networks, based on convolutional and pooling layers. These
are typically applied in image processing tasks, where images are represented as
matrices. Because text and music can often be represented as sequential data, a
common model employed in NLP and MIR has been recurrent neural networks.
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5.2.2 Recurrent models

Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986) are a class of artificial
neural networks designed to process sequential data by maintaining an internal
memory. Beyond the standard components of fully connected networks – namely
input, hidden, and output layers – RNNs are characterized by their recurrent connec-
tions within the hidden layers. Unlike traditional feedforward networks presented in
the previous section, recurrent connections involve a hidden state ℎ⟨𝑡⟩ at time 𝑡 which
is passed and updated through time. This hidden state ℎ⟨𝑡⟩ depends both on the
previous hidden state ℎ⟨𝑡−1⟩ and the current input 𝑥⟨𝑡⟩. This recurrence is controlled
by learned parameters matrices𝑊ℎℎ and𝑊ℎ𝑥, which are shared across all time steps:

ℎ⟨𝑡⟩ = 𝜎1
(
𝑊ℎℎℎ

⟨𝑡−1⟩ +𝑊ℎ𝑥𝑥
⟨𝑡⟩ + 𝑏ℎ

)
At each time step, these hidden states are then used to compute an output 𝑦⟨𝑡⟩

through a linear transformation defined by the weight matrix𝑊𝑦𝑎:

𝑦⟨𝑡⟩ = 𝜎2
(
𝑊𝑦ℎℎ

⟨𝑡⟩ + 𝑏𝑦
)

In order to train a recurrent model, parameters are updated through a process
called back-propagation through time, which propagate the gradient of the loss both
backward through the sequence of time steps and across the layers of the network.

This basic recurrence mechanism can be further refined to address particular
issues, such as capturing long-term memory which lead to improved recurrent units
such as Long-Short Term Memory (LSTM) or Gated Recurrent Unit (GRU), as detailed
in the following paragraphs.

RNNs are widely used in NLP and other domains involving sequential dependen-
cies, such as time series forecasting. Depending on the nature of the task, RNNs, and
more generally sequential models including Transformers, can be implemented in
various configurations (Figure 5.2):

• One-to-many (5.2a): A single input leads to a sequence of outputs (e.g. free gen-
eration, where a single input token can initiate the model and each generated
output is used as input for the next steps).

• Many-to-one (5.2b): A sequence of inputs is used to predict a single output
(e.g. author classification or sentiment analysis)

• Many-to-many (or sequence-to-sequence): A sequence of inputs produces a
sequence of outputs. This setup includes two cases:

– Equal-length input and output sequences (5.2c), such as in named entity
recognition or part-of-speech tagging.
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Figure 5.2: Configurations of sequential models according to the input and output sizes.

– Different-length input and output sequences (5.2d), as seen in text sum-
marization or machine translation.

In MIR, only a few studies used basic RNN models, such as RNN-RBM (Boulanger-
Lewandowski et al., 2012) or RNN-DBN (Goel et al., 2014) combining RNN, Re-
stricted Boltzmann Machine, and Deep Belief Network for polyphonic music gen-
eration. Such RNNs however have shown to suffer from the issue of vanishing
gradient occurring with long sequences, which is often the case in symbolic music,
as mentioned in Section 4.1.2.1.

Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) have
been developed to specifically address this issue. Alongside with the hidden states,
an additional cell state 𝑐⟨𝑡⟩ is passed through time steps which serves as the long-term
memory of the network by mitigating the vanishing gradient problem. This cell state
is modified through three gates – a “forget gate”, an “input gate” and an “output
gate” – each playing a distinct and interpretable role in controlling the cell state. It
is then used to compute the updated hidden state for the next time step. An other
improvement of recurrent networks then emerged with the introduction of Gated
Recurrent Units (GRUs) (Cho et al., 2014). Compared to LSTM models, GRUs
are based on a simpler architecture, in particular by merging the forget and input
gates into a single “update gate”. This reduces the total number of parameters and
consequently shortens training time, while maintaining similar performances to
LSTM (Chung et al., 2014).

Multiple studies in MIR have implemented these models for analysis tasks with
a bi-directional LSTM performing harmonic analysis (Chen and Su, 2018). These
recurrent models are often used as baselines or model benchmarks to compare
multiple methods on an analysis task, such as melody extraction (Kosta et al., 2022)
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from a polyphonic texture, emotion classification (Hung et al., 2021), or genre
classification based on LSTMs (Angioni et al., 2023) or GRUs (Kong et al., 2020).

For generative tasks, constraints enforced to the generated content can influence
the choice or design of the model architecture. For music infilling, Hadjeres and
Nielsen (2017) proposes an LSTM-based model composed of a “token-RNN” and
a “constraint-RNN” operating on the sequence from opposite directions. Similarly,
such model based on two opposite directions is also used for chorale generation
and harmonization (Hadjeres et al., 2017). Long-term memory of LSTMs is often
leveraged to ensure long-term consistency, whether in terms of structure (Medeot
et al., 2018) or harmony for folk melodies (Chen et al., 2019) or jazz (Trieu and Keller,
2018). Since recurrent models were first applied to text data in NLP, MIR studies
based on RNNs have also taken advantage of this textual representation to process
music as chords (Choi et al., 2016) or as ABC notation (Sturm et al., 2016). These
models can also be parts of multimodal systems, which process both text and music
for tasks such as lyrics-conditioned generation based on LSTMs (Yu et al., 2021) or
GRUs (Bao et al., 2019) which aim at generating monophonic melodies that match
given lyrics. In between music analysis and conditioned generation, BUTTER (Zhang
et al., 2020) is a multi-purpose GRU-based model that processes separately music
and textual data for text-based music query and generation. In particular, this latter
model also fits within the category of multi-agent models. Recurrent layers can serve
as agents within a broader architecture, allowing a complex task to be decomposed
into smaller sub-tasks each performed by dedicated sub-models. For instance, in
drum accompaniment generation, Makris et al. (2019) introduces a model in which
the drum set is divided into three main components, with each part generated by its
own specialized sub-model. JamBot (Brunner et al., 2017) is an end-to-end chord-
conditioned model consisting of a chord generator followed by a polyphonic LSTM
aiming at generating melodies that match the generated chords. Going one step
further, XiaoIce Band (Zhu et al., 2018) performs a chord-conditioned generation
task through a GRU-based model, followed by a multi-instrumental arrangement
task for pop music.

Beyond being used as vanilla models, recurrent layers are often part of larger
classes of architectures such as Generative Adversarial Networks (GANs) or Vari-
ational Auto-Encoders (VAEs). These particular architectures are not limited to
recurrent models and can typically be used with attention layers (Section 5.3). The
recurrence mechanism might also be improved through various approaches such as
reinforcement learning or attention.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) can include
recurrent layers as part of their components. This architecture consists of a generator
and a discriminator which are trained simultaneously through adversarial training
to generate realistic data. Specifically, the generator learns to produce increasingly
realistic samples, while the discriminator is trained to distinguish between real data
and the generator’s outputs. LSTM-based GANs have typically been developed for
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chord-conditioned generation (Trieu and Keller, 2018) or lyrics-conditioned melody
generation (Yu et al., 2021).

Variational Auto-Encoders (VAEs) (Kingma and Welling, 2013) are another type
of generative model. They are trained to encode and decode data in a probabilistic
way, allowing for the generation of new samples while capturing the underlying
structure of the input data. VAEs’ architecture consists of an encoder and a de-
coder connected through a latent space, where the encoder maps input data into
a probabilistic distribution. The decoder then generates content by balancing ac-
curate reconstruction of the input with regularization of the latent space1. With
recurrent layers, such architecture can involve LSTM or GRU layers for generative
purposes (Roberts et al., 2018), with specific tasks or styles such as style trans-
fer (Brunner et al., 2018), orchestral music generation (Lousseief and Sturm, 2019),
drum generation (Gillick et al., 2019), or Chinese folk song generation (Luo et al.,
2020). Beyond their generative use, the learned latent space of VAEs can also be
analyzed revealing particular directions representing musical aspects such as speed
or repetitiveness (Turker et al., 2022), note and chord relations (Wang et al., 2020c),
or higher level concepts such as music genre (Valenti et al., 2020) in the same way as
text VAEs can highlight semantic relations in language (Deudon, 2018).

Hierarchical RNNs (Chung et al., 2017) are designed to capture dependencies
across multiple temporal or structural scales—two key characteristics of both sym-
bolic music and text. This architecture typically consists of several stacked RNNs,
where each layer operates at a different temporal or structural resolution. Therefore,
such a model has been widely implemented in NLP in topic-conditioned genera-
tion (Guo et al., 2020) or translation (Su et al., 2018). In MIR, this hierarchical
property is exploited for structured-conditioned generation tasks (Wu et al., 2020a),
with multiple levels of granularity (Jeong et al., 2019a) or chord-conditioned genera-
tion (Zixun et al., 2021). The hierarchical property of such architecture can also be
leveraged to encode music theory concepts at multiple levels, then used to condition
pop music generation (Chu et al., 2016).

Recurrent layers have also been employed in models trained on symbolic MIR
tasks using other paradigms, in particular reinforcement learning, based on a model
trained to make decisions by interacting with an environment by rewarding or
penalizing it. In NLP, reinforcement learning is particularly used in conversational
systems (Uc-Cetina et al., 2023). The choice of these rewards are often based on
musical rules, such as pitch entropy or chords (Kumar and Ravindran, 2019) or
note intervals and repetitiveness (Jin et al., 2020). Beyond reinforcement learning,
evolutionary computation is also explored with an LSTM-based model trained with
a genetic algorithm to generate ABC notation (Farzaneh and Toroghi, 2020).

Beyond the architecture and the training paradigm, inner mechanisms aiming
at improving basic recurrent models have been proposed and adopted in MIR. This

1An extensive description of VAEs is presented in Section 8.1.2, where we use this architecture for
a re-orchestration task.
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includes attention (Bahdanau et al., 2015) which aims at giving different weights
of importance to the elements of the processed sequence. In particular, it has been
initially implemented for encoder-decoder models, so that the decoder can attend to
all encoder hidden states for each generated element in the output sequence. Atten-
tion in NLP can be implemented on most of tasks, in multiple model architectures,
and can be computed through multiple attention functions (Galassi et al., 2021).
This mechanism can be used with symbolic music for enhancing overall coherence
in a multi-track arrangement task (Zhu et al., 2018) or enforcing temporal struc-
ture (Jeong et al., 2019a), in particular to help building a melody with a long-term
structure (Waite, 2016).

By the late 2010s, Transformer models (Vaswani et al., 2017) marked a major
breakthrough in the field of NLP. These models can also take as input sequential
data, but does not rely on recurrent mechanisms, leveraging attention mechanisms
instead. As several state-of-the-art models, in both NLP and MIR, are now built upon
this architecture, a substantial part of this review part is dedicated to such models.

5.3 Attention-based models

Attention is a mechanism proposed by Bahdanau et al. (2015), initially as an improve-
ment of encoder-decoder RNNs (Section 5.2). In the this architecture, the decoder
relies solely on the final hidden state resulting from the encoder, which is expected
to encapsulate the entire input sequence and may act as a bottleneck. Indeed, this
final state may not represent all parts of the input equally: information from earlier
elements of the sequence, in particular, might be significantly diluted. Instead, the
attention mechanism aims at explicitly assigning a weight, called attention weight, to
each element of the input sequence allowing the model to compute each element of
the output sequence by focusing more or less on different parts of the input.

Presentation of Transformers – Vaswani et al. (2017) introduced Transformers show-
ing that a model based solely on attention – without using any recurrent mechanism
– can outperform state-of-the-art results in NLP. More precisely, Transformers are
based on a self-attention mechanism and multi-head attention blocks (Figure 5.3).
The self-attention mechanism is similar to the original attention mechanism in
that it aims at representing a token sequence by incorporating information from all
tokens in the sequence, but improves upon it by eliminating the need for recurrent
mechanisms. More formally, considering the embedded input sequence 𝑋 ∈ R𝑛×𝑑 of
length 𝑛 with its embedding size being 𝑑, we define a key vector 𝐾, a query vector 𝑄
and a value vector 𝑉 such that: 

𝑄 = 𝑋𝑊𝑄 ∈ R𝑛×𝑑𝑄
𝐾 = 𝑋𝑊𝐾 ∈ R𝑛×𝑑𝐾
𝑉 = 𝑋𝑊𝑉 ∈ R𝑛×𝑑𝑉
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Figure 5.3: Transformer architecture, following an encoder-decoder architecture, with a
focus on multi-head attention and its self-attention mechanism. The model is composed of a
stack of encoders implementing self-attention which is linked through cross-attention to a
stack of decoders implementing masked self-attention. Figures adapted from (Vaswani et al.,
2017).

where 𝑊𝑄 ∈ R𝑑×𝑑𝑄 , 𝑊𝐾 ∈ R𝑑×𝑑𝐾 , and 𝑊𝑉 ∈ R𝑑×𝑑𝑉 are weight matrices that can be
trained. In practice, the dimensions are often chosen so that they are all equal:
𝑑 = 𝑑𝑄 = 𝑑𝐾 = 𝑑𝑉 . The output of a self-attention head Attention (𝑄, 𝐾,𝑉) ∈ R𝑛×𝑑 is
then defined as:

Attention (𝑄, 𝐾,𝑉) = Softmax

(
𝑄𝐾T

√
𝑑𝐾

)
𝑉 (5.1)

The query, key, and value can be understood more intuitively as follows:

• The query 𝑄𝑖 token asks “how relevant is every other word to me?” and
“searches” for other tokens that might be important.

• The key 𝐾𝑖 token “answers” to the query through a dot product, indicating
whether it is similar (e.g. grammatically, contextually, semantically) to the query
so that it might be worth having a high attention weight.

• The value 𝑉𝑖 is the actual information carried by a word. The next hidden state
is derived from this value weighted according to how relevant each word is
based on the interaction between the query and key.
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An improvement is then to concatenate the outputs of multiple attention heads
for the multi-head attention mechanism. By considering ℎ attention heads in a
layer, the multi-head attention is defined as:

MultiHead (𝑄, 𝐾,𝑉) = Concat (head1, . . . , headℎ)𝑊𝑂 (5.2)

where head𝑖 = Attention
(
𝑋𝑊𝑄

𝑖 ,𝑊
𝐾
𝑖 ,𝑊

𝑉
𝑖

)
where𝑊𝑂 is a learned parameter matrix. This allows heads from a same layer to focus
on different aspects of the sequence. For instance, one head can specifically focus on
pronouns, verbs, or positional information such as next or previous tokens (Clark
et al., 2019). This can be analogous to a practice in the field of image processing,
where convolutional neural networks use layers with multiple kernels. Each one can
focus on different features of the image, such as edges or colors (Zeiler and Fergus,
2014). As the Transformer usually consists of multiple stacked encoders or decoders,
the output from one layer is then passed as input to the next self-attention layer in
the subsequent module with additional unaltered information from the previous
layer incorporated through residual connections (Figure 5.3).

Since Transformers do not rely on recurrent mechanism, the order of the tokens
within the sequence is incidentally not explicitly represented. To address this, a
positional encoding is added to the input embeddings to provide information about
each token’s position. The original approach relies on sinusoidal functions of different
frequencies (Vaswani et al., 2017). This method has since been refined through
various techniques (Irani and Metsis, 2025), notably through relative positional
encodings (Shaw et al., 2018; Huang et al., 2020), which represent the relative
distance between tokens instead of their absolute positions.

Transformers offer two main improvements to RNNs. The processing of sequences
is sped up, as the entire sequence is passed through the model once and processed
in parallel. Moreover, it provides a solution to the problem of vanishing or ex-
ploding gradients that occurs with basic RNNs and the issue of hard training with
LSTMs. Whereby during back-propagation through time, such recurrent models
often struggle in capturing long-term dependencies between words (Noh, 2021). This
phenomenon is also true for music generation (Herremans et al., 2017). Transformers
have been applied to symbolic music representations, but also in a variety of other
domains, such as computer vision (Dosovitskiy et al., 2020), audio (Dong et al., 2018),
reinforcement learning (Li et al., 2023a) as well as multimodal applications such as
speech-to-text (Latif et al., 2023) or text-to-image (Chang et al., 2023).

Their use has been greatly facilitated with the development of libraries, such as
AllenNLP (Gardner et al., 2018), FairSeq (Ott et al., 2019) or more predominantly,
HuggingFace (Wolf et al., 2020). This last library offers model architectures, pre-
trained models, tokenizers, and various utilities to simplify the development and
deployment of NLP applications. As a result, numerous MIR studies have started
utilizing HuggingFace by leveraging its tools and resources for musical tasks. These
include implementations of subword tokenizers (Section 4.1.2) such as BPE (Sennrich
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et al., 2016) or Unigram (Kudo, 2018) used by Kumar and Sarmento (2023) and model
implementations such as BERT (Devlin et al., 2019) for MidiBERT (Chou et al., 2024)
or GPT-2 (Radford et al., 2019) used in MMM (Ens and Pasquier, 2020).

Attention-based models for symbolic music processing – In this section, we pro-
pose an overview of attention-based models applied to symbolic music data seen
through three technical prisms. A first way of characterizing these models is based
on their training paradigm, namely end-to-end training on specific tasks, or pre-
training and fine-tuning (Section 5.3.1). In a musical sense, pre-training assumes a
hypothesis of a general understanding of music. Beyond the training process, we de-
scribe various architectures that have been implemented (Section 5.3.2). The model
architecture, based on Transformer encoders, decoders, or combining different types
of data, influences how music is processed. Finally, we present the enhancements of
the Transformers’ internal mechanisms, originally designed for text but customized
to specifically process symbolic music data (Section 5.3.3). In this thesis, we further
explore these mechanisms through the lens of model explainability (Chapter 7).

Naturally, these three characteristics of models are not mutually independent
and all models can be described following each three points. This overview aims first
at describing models under different technical prisms which reflect complementary
aspects of their design and functionality, and secondly at highlighting how these per-
spectives contribute to a deeper understanding of the ways attention-based models
are adapted to symbolic music processing.

We provide extensive summaries of attention-based models for symbolic MIR are
presented in Table B.2 and Table B.3.

5.3.1 Training paradigms

Models can first be categorized by their training paradigm (Figure 5.4). On the one
hand, end-to-end models are models trained directly for their specific task. On
the other hand, pre-trained models involve a pre-training step on a generic task
followed by a fine-tuning step on one or multiple tasks. This approach is at the heart
of Large Language Models (LLMs) in NLP. From an intuitive perspective, textual pre-
trained models aim first at modeling or understanding language globally, by learning
language grammar, structure but is not specialized for a particular task. Fine-tuning
then serves to specialize this pre-trained model for a particular downstream task.
Similarly, MIR studies that rely on pre-trained models also assume that these models
first capture global musical structures, before being fine-tuned for specific musical
tasks.
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Figure 5.4: Training paradigms: end-to-end training involves a model trained specifically for
a task, and pre-training + fine-tuning involves a pre-trained model trained on a generic task.

indicates that the model parameters are frozen, and indicates that they are trainable.

5.3.1.1 End-to-end models

End-to-end models are directly trained for a specific task. In this approach, the model
is trained from scratch in a training step in which all parameters are learned jointly
from input to output. Beyond its technical simplicity as it requires only one training
phase, this paradigm offers a few advantages, notably producing models that are
often well-adapted to a specific task and type of data.

In the same way as recurrent networks (Section 5.2.2), self-attention layers
can be part or larger models, such as Transformer-based GANs (Goodfellow et al.,
2014). Such models are used for generative tasks such as free generation (Muhamed
et al., 2021), or emotion-driven generation (Neves et al., 2022). Other models in-
clude Transformer-based VAEs (Kingma and Welling, 2013). Multiple tasks are
performed using this paradigm, such as priming-conditioned generation (Jiang
et al., 2020b), chord-conditioned generation (Choi et al., 2021), lyrics-conditioned
generation (Duan et al., 2023), or artistic-controllable generation (von Rütte et al.,
2023).

End-to-end models also include several data-specific models designed to process
musical data beyond notes. The Chordinator (Dalmazzo et al., 2024) model handles
chord data and is based on a minGPT architecture2, without its pre-training process.
Various models are trained on guitar tablatures, for tablature generation (Chen et al.,
2020), metadata-conditioned generation (Sarmento et al., 2021), style-driven genera-
tion (Sarmento et al., 2023b), or instrument-conditioned generation for bands (Sar-
mento et al., 2023a).

Beyond generative tasks, a few models performing analysis tasks have been
developed using this end-to-end training paradigm. They are trained on labeled
datasets, such as roman numeral-annotated datasets (Chen and Su, 2019, 2021) for
functional harmony analysis, or style-annotated datasets (Angioni et al., 2023) for

2https://github.com/karpathy/minGPT

https://github.com/karpathy/minGPT
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style classification.

While the end-to-end training paradigm offers several advantages, it requires a
large amount of task-specific data to achieve optimal performance, especially with
labeled data which may be too scarce, which can lead to overfitting. Additionally,
training a full model from scratch for a single task can be both time-consuming and
computationally demanding. Therefore, pre-trained models can offer solutions to
overcome part of these challenges.

5.3.1.2 Pre-trained models

In contrast with end-to-end models, pre-trained models are usually not task-specific
and follow two training phases. The model is first pre-trained on a large corpus
of data – generally unlabeled – via generic self-supervised tasks (e.g. next token
prediction or masked language modeling). Once the model is pre-trained, it is
fine-tuned on a specific downstream task by being trained on a smaller task-specific
labeled dataset. This fine-tuning step is also convenient as it requires less data
than the pre-training process, and takes less time to train the model instead of
multiple trainings from scratch for each existing task. While pre-training was prior
to attention-based models, the latest state-of-the-art NLP-derived pre-trained models
have switched to Transformer-based architectures both in NLP and MIR. In the field
of NLP, such pre-trained models are usually called LLMs, so that the MIR community
has also shifted towards using this term (Ma et al., 2024).

State-of-the-art pre-trained language models include Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin et al., 2019). Its architecture is
based on a stack of Transformers encoders. BERT is based on a bidirectional training
approach and a masked language model: a pre-training task includes masked word
prediction by taking into account its left and right context. Multiple variations of
BERT applied to symbolic music have been proposed. MuseBERT (Wang and Xia,
2021) develops a specific representation merging musical attributes and relations
and processed by the attention mechanism. MusicBERT (Zeng et al., 2021) is a
model designed based on RoBERTa (Liu et al., 2019) and improves the pre-training
step by implementing a custom bar-level masking strategy instead of the original
token masking. The model is evaluated on melody completion, accompaniment
suggestion, genre and style classification. A pre-trained MusicBERT is then served
in RNBert (Sailor, 2024), which fine-tunes it to perform Roman Numeral Analysis
(RNA). A model combining this MusicBERT model with a Music Transformer has
been evaluated on several downstream tasks, resulting in better performances than a
MusicBERT only (Fu et al., 2023). Instrument-specific BERTs have been implemented
such as SoloGPBERT (Sarmento et al., 2023b) for guitar tablatures, MRBERT (Li
and Sung, 2023b) for lead sheets or MidiBERT-Piano (Chou et al., 2024) for piano.
This model is then extended beyond piano music and improved with musically
meaningful pre-training tasks (Shen et al., 2023). BART (Lewis et al., 2019) is also a
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model pre-trained via token masking and is used by PianoBART (Liang et al., 2024),
implementing multiple-level token masking and resulting in better performance
than other BERT models.

Generative Pre-trained Transformer (GPT) (Radford et al., 2018) is, instead,
pre-trained through an auto-regressive task and is often used for tasks involving
text or music generation as further explained in Section 5.3.2. In NLP, multiple
improvements of GPT have been developed such as GPT-2 (Radford et al., 2019),
GPT-3 (Brown et al., 2020) and GPT-4 (Bubeck et al., 2023). For symbolic music,
Musenet (Payne, 2019), MMM (Ens and Pasquier, 2020) and MIDI-GPT (Pasquier
et al., 2025) are based on GPT-2 and are trained for conditioned generation. Another
approach has been implemented for drum music generation (Zhang and Callison-
Burch, 2023): music is represented as textual data which and a pre-trained textual
GPT-3 is fine-tuned on this textual representation of music.

Finally, beyond GPT and BERT, which are commonly considered as the foundation
of pre-trained models in NLP, models that integrate pre-trained components have
been developed for symbolic music purposes. LakhNES (Donahue et al., 2019) and
DBTMPE (Qiu et al., 2021) avoid the lack of data for their respective downstream
tasks by being pre-trained on larger corpora and then fine-tuned for chiptune music
generation or genre classification.

5.3.2 Model architecture

Attention-based models can also be categorized by their architecture. In NLP, the
first Transformer model for translation (Vaswani et al., 2017) was based on an
encoder-decoder architecture (Figure 5.3). Afterwards, several NLP models based
on either encoders (Devlin et al., 2019), decoders (Radford et al., 2018), or with
modified mechanisms have been proposed. These two modules typically serve
distinct functions: an encoder is designed to understand the full input while a
decoder aims to generate from an input. MIR studies have leveraged these existing
models to adapt them for symbolic music data. Additionally, unlike NLP models
that usually handle text for both input and output, MIR experiments have been
conducted with multimodal models capable of processing different types of data,
in particular for tasks like text-to-symbolic music. These multimodal models have
found application in domains such as audio processing with MusicLM (Agostinelli
et al., 2023) or non-music fields such as image processing with Dall-E (Ramesh et al.,
2021).

5.3.2.1 Encoder only

Transformer encoders (Figure 5.3, left part) are based on a self-attention mechanism,
allowing the learning of knowledge on the complete sequence. Bidirectional models,
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which are based on this encoder-only architecture, have led to symbolic music
adaptations of BERT such as MuseBERT (Wang and Xia, 2021), MusicBERT (Zeng
et al., 2021), MidiBERT-Piano (Chou et al., 2024), MRBERT (Li and Sung, 2023b),
and SoloGPBERT (Sarmento et al., 2023b). Going further, Han et al. (2023) analyze
the inner embeddings from BERT when trained on symbolic music and highlight the
role of specific layers on the model performance. BERT is also used as an architecture
without its pre-training process by MTBert (Zhao et al., 2023b) aiming at analyzing
the sections of a fugue form.

Beyond BERT, mainly characterized by its pre-training process, Transformer
encoders have also been experimented with as a component of global encoder-decoder
architecture, in which the encoder keeps a defined role, as detailed below. Such
Transformer encoders are also widely used as the discriminator module in GAN-
based models (Zhang, 2020; Muhamed et al., 2021), initially developed for generation
purposes. They are usually implemented followed by an encoder-decoder or decoder-
only as the GAN generator.

5.3.2.2 Decoder only

In contrast with Transformer encoders, Transformer decoders (Figure 5.3, right part)
implement a masked self-attention mechanism. Such models only have knowledge of
past tokens so that they are usually implemented for auto-regressive generative tasks.
In practice, a mask matrix is added to the dot product between 𝑄 and 𝐾, where the
upper diagonal (i.e. attention from past to future tokens) is set to −∞. This causes
the corresponding attention weights to become zero after applying the Softmax(·)
normalization.

The first Music Transformer (Huang et al., 2019) is based on a decoder-only
model for priming and harmonization tasks, and is then reused by Sulun et al.
(2022) for emotion-conditioned generation. Generation is tackled by the MultiTrack
Music Transformer (Dong et al., 2023) for instrument-conditioned generation then
improved for genre control (Xu et al., 2023), the Choir Transformer (Zhou et al.,
2023) for 4-part harmonization, and by Tang et al. (2023) for expressive performance
reconstruction. Compose & Embellish (Wu and Yang, 2023a) is a framework based
on two encoder-only models, in which the first one aims at generating a lead sheet,
followed by the second model that generates the accompaniment.

Decoder-only models are typically trained through a pre-training and fine-
tuning process (Section 5.3.1.2), in particular with GPT-based models, such as
Musenet (Payne, 2019), MMM (Ens and Pasquier, 2020), or MIDI-GPT (Pasquier
et al., 2025). By comparing multiple decoder-only architectures, such pre-trained
decoder-only models appear to perform better in piano generation (Ferreira et al.,
2023).

Several models combine Transformer decoders with lighter recurrent models.
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Q&A (Zhao et al., 2023c) combines GRU-based PianoTree-VAEs with a Transformer
decoder for arrangement generation. In the same way, Choi et al. (2021) use a bi-
LSTM model as a chord encoder, followed by Transformer decoders as pitch and
rhythm generators. This architecture is also implemented in the Bar Transformer
model (Qin et al., 2022) for long-term structure generation, where the LSTM captures
note-level dependencies and Transformer decoders capture bar-level relations.

The fixed length of the accepted context is a limiting issue with Transformers.
This is notably crucial because musical sequences are generally much longer than text
sequences. The Linear Transformer (Katharopoulos et al., 2020) improves the atten-
tion mechanism with a linear complexity. The Compound Word Transformer (Hsiao
et al., 2021) takes advantage of this computational optimization, coupled with its
shorter sequence representation, for piano music generation. SymphonyNet (Liu
et al., 2022) is also based on this model to address the even longer length of orchestral
pieces, necessitating this lightweight attention mechanism to effectively process such
data. Another improvement of Transformers is Transformer-XL (Dai et al., 2019),
also based on auto-regressive generation, which is able to take into account a much
longer context than Transformers. Instead of using fixed-length inputs as in standard
Transformers, Transformer-XL extends the context by reusing hidden states from
previous segments, allowing the model to attend to a longer memory. Therefore,
such models have been used in several generation studies involving multi-track
music (Lee et al., 2022), piano music (Huang and Yang, 2020; Muhamed et al., 2021;
Wu and Yang, 2023b), lead sheets (Wu and Yang, 2020; Li et al., 2023c), or guitar
tablatures (Chen et al., 2020; Sarmento et al., 2021, 2023a,b). Chang et al. (2021)
performs a task of music infilling by implementing an improved Transformer-XL,
XLNet (Yang et al., 2019b), a Transformer-based model that can attend to past and
future in the same way as BERT, while maintaining an autoregressive predicting
order.

5.3.2.3 Encoder-decoder

Finally, following the architecture of the vanilla Transformer, multiple models for
symbolic MIR implement an encoder-decoder architecture (Figure 5.3). This archi-
tecture typically allows for the encoder and the decoder to perform different roles in
the downstream task.

Functional harmony analysis has been tackled by the Harmony Transformer (Chen
and Su, 2019, 2021). The model implements this architecture, where the encoder
first perform a chord segmentation task followed by the decoder which infers the
chord symbol.

For generative purposes, such architectures are typically used with an encoder
which analyzes musical constraints and a decoder that generates musical content.
Makris et al. (2021) implements similar architectures, with an encoder analyzing
chord valence that conditions an auto-regressive decoder for a generation task. In
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the Theme Transformer model (Shih et al., 2023), the encoder analyzes the recurrent
theme, from which the decoder generates music depending on the conditions re-
garding the theme position within the generated content. MusIAC (Guo et al., 2022)
is a framework based on an encoder-decoder architecture, in which an encoder is
pre-trained as a masked language model, linked with a decoder which performs an
infilling task.

Encoder-decoder using pre-trained models as part of their architecture have been
developed. Multi-MMLG (Zhao et al., 2023a) is developed for a melody extraction
task. It implements an XLNet (Yang et al., 2019b) aiming at classifying notes as
main melody or accompaniment, followed by a modified MuseBERT model that
extracts secondary melodies. T5 (Raffel et al., 2020) is an encoder-decoder model
developed in NLP to handle text-to-text tasks. The model has been adapted for music
by MelodyT5 (Wu et al., 2024) for melody-related tasks or Composer’s Assistant (Ma-
landro, 2024) for an infilling task, both using textual representations of music to
leverage the text-to-text characteristics of the backbone model. In NLP, encoder-
decoder models are often implemented for translation purposes (Vaswani et al.,
2017). Gover and Zewi (2022) implement BART (Lewis et al., 2019), an encoder-
decoder architecture with learned positional embeddings, for a task analogous to
language translation in the realm of music: music arrangement.

For multi-track music, encoder-decoder architectures are typically suited by
dedicating multiple decoders or encoders to each specific track. In the context
of a multi-track accompaniment generation task, AccoMontage-band (Zhao et al.,
2024b) is built on such an architecture consisting of an encoder followed by multiple
decoders. BandControlNet (Luo et al., 2024) implements a multiple-decoder archi-
tecture called “cross-track Transformer” and improves fidelity-related metrics in a
controllable generation task. Finally, this encoder-decoder architecture is largely used
in auto-encoder architectures. The Transformer VAE (Jiang et al., 2020b) implements
a sampling step from a latent space, from which keys and values are derived for the
cross-attention mechanism. MuseMorphose (Wu and Yang, 2023b) and FIGARO (von
Rütte et al., 2023) are models based on VAEs, developed for controllable symbolic
music generation, which use their latent space representations as constraints.

In Chapter 8, we further build upon this encoder-decoder VAE architecture, which
benefits from analysis and generative properties, by proposing a model trained to
perform a symbolic music re-orchestration task.

5.3.2.4 Multimodal models

A variety of MIR systems have been developed to integrate other types of data such as
text or video, in combination with symbolic music, often referred to as multimodal
models.

Text-to-image systems (i.e. generating an image from a textual description) have
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been gaining in popularity these last few years. This has then naturally resulted in
text-to-music systems in both audio (Agostinelli et al., 2023) and symbolic music.
In symbolic MIR, studies have explored models linking text and music, including a
task of lyric-to-melody with TeleMelody (Ju et al., 2022) processing musical high-
level features or operating at the syllable level (Duan et al., 2023). MuseCoco (Lu
et al., 2023) addresses the text-to-MIDI task by dividing it into two stages: a text-
to-attribute step using a BERT model, and an attribute-to-MIDI step treated as
a conditional generation task. However, its reliance on a fixed set of predefined
attributes limits its flexibility. To overcome this, Text2midi (Bhandari et al., 2025)
proposes a similar architecture but replace the attribute step with a frozen FLAN-T5
model that processes the text caption and passes its hidden states to a Transformer
decoder trained to generate music conditioned on these states.

However, most text-to-symbolic-music tasks currently process ABC notation, as
this encoding is already in a textual format (Wu and Sun, 2023). ChatMusician (Yuan
et al., 2024) is based on Llama-2 (Touvron et al., 2023) and is framed as a music
chatbot which can write ABC notation music and chat with a user about music theory
knowledge. GPT-4 is able to perform such a text-to-ABC task, among multiple other
tasks (Bubeck et al., 2023) but struggles at modeling musical concepts such as har-
mony. To overcome this issue, this task is split into multiple musically-meaningful
subtasks in ComposerX (Deng et al., 2024a) which uses GPT-4 for melody gener-
ation, harmonization and instrument selection. Finally, beyond generative tasks,
CLaMP (Wu et al., 2023) integrates two BERT-based models – one for text encoding
and the other for music encoding – for a tune query task based on natural language
descriptions. Improvements of the CLaMP model (Wu et al., 2025) are used as the
reward feedback in a reinforcement learning framework developed by Wang et al.
(2025), which generates ABC Notation conditioned on musical period, composer,
and instrumentation.

Multiple systems have been experimenting with symbolic music generation for
video considering the use of music in videos like soundtracks in movies. Di et al.
(2021) relies on a linear Transformer to generate symbolic music for videos that are
analyzed in terms of motion speed and saliency conditioning the generated music
rhythm. Kang et al. (2023) add a semantic and emotion analysis of the scene, and
more specifically generate chords matching these video features.

5.3.3 Adapting attention models inner mechanisms and training
paradigm to symbolic music

Extensive studies have been conducted regarding the mechanisms of Transformers
applied to text data, including positional encoding and attention mechanisms. When
applied to symbolic music, these mechanisms may be improved to be tailored for
this different context.
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Similarly to text, multiple MIR studies have also developed positional encodings
and customized them for the specificities of music. With the Music Transformer
model (Huang et al., 2019), a relative positional self-attention mechanism is de-
veloped for music generation. This improves the relative positional encodings from
(Shaw et al., 2018), which consider the tokens’ relative positions in the attention
mechanism rather than their absolute positions. The proposed enhancement effec-
tively reduces the time complexity, enabling the processing of much longer sequences
that are characteristic of symbolic music data. Similarly, the stochastic positional
encoding (Liutkus et al., 2021) aims to be compatible with linear complexity atten-
tion, improving the consistency of generated chunks of music on long sequences.
The specificities of multi-track music inspired the SymphonyNet model to develop
a 3-D positional embedding (Liu et al., 2022) in order to make the model semi-
permutation invariant. Tokens are embedded over three axes – note, measure and
track – in which the track order is completely permutation invariant (i.e. the order
of tracks is inconsequential), but the temporal position of the notes or the measures
must remain time-dependent. Similarly, musically meaningful positional encodings
have been developed based on notes attributes and relations (Wang and Xia, 2021),
bars (Chang et al., 2021), musical themes (Shih et al., 2023), structure and musical
time (Payne, 2019), or instruments (Zhao et al., 2023c, 2024b).

The conductor congratulates the singer because she sang well

(a) Text self-attention visualization. Arrows represent self-attention weights between each token
(here, a full word) and the token <she>.

(b) Musical self-attention visualization through a piano roll representation. The tokenization in use is
MIDI-like. Reproduced from (Huang et al., 2018).

Figure 5.5: Text and music self-attention visualization.

Transformers implement a self-attention mechanism. Beyond further adapting it,
this mechanism can be easily visualized both in text and music (Figure 5.5). However,
while attention in language models can often be interpreted through grammatical or
semantic roles (Clark et al., 2019), attention links between musical tokens are instead
guided by distinct musical aspects. Such visualization can show differences between
attention heads being more or less specialized in chords or melody (Huang et al.,
2018). Self-attention has also been studied as a source of high-level interpretations,
such as music theory insights, in terms of motifs, harmony, or temporal dependen-
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cies. Such musical objects captured by attention are numerous, including cadential
passages (Loiseau et al., 2021) or musical phrases or modulating sequences (Jiang
et al., 2020a). Dong et al. (2023) notably introduce a metric, the mean relative
attention, designed to measure how much attention the model gives to elements
in the input that are a certain distance away (in terms of pitch, beat, etc.) from the
current element. For instance, their model appears to highlight consonant musical
intervals such as octaves, fifths or fourths.

Beyond visualization, this attention mechanism itself has also been adapted to
symbolic music. The Museformer model (Yu et al., 2022) is based on a fine-grained
and coarse-grained attention aiming at reducing the complexity of the mechanism,
leveraging the expected repetitive aspect of music. This mechanism is based on
an attention divided into a fully developed attention mechanism on more relevant
bars (i.e. the repeated ones) and a weaker attention on less relevant ones. The RIPO
(Relative Index, Pitch and Onset) attention (Guo et al., 2023) is proposed with
the fundamental music embedding, relying on the structure of symbolic music
built on relative onsets and pitches. In a context of controllable style transfer, the
MuseMorphose model (Wu and Yang, 2023b) includes an in-attention conditioning
that takes into account constraints in the self-attention computation. The structure-
enhanced self-attention from BandControlNet (Luo et al., 2024) incorporates a
similarity score between bars in the attention computation in order to enhance the
structure consistency of tracks. For lead sheet data, a melody/rhythm cross attention
is implemented in MRBERT (Li and Sung, 2023b), in which these two features are
merged and simultaneously processed through attention.

Finally, training strategies with musical specificities have also been developed.
Based on a GAN architecture (Goodfellow et al., 2014), a local prediction map (Neves
et al., 2022) is proposed so that the discriminator also specifies which parts of the
generated sequence is real or generated, instead of the whole sequence. The Nested
Music Transformer (Ryu et al., 2024) improves the training of generative models
based on Compound Words (Hsiao et al., 2021) by generating the inner components
of each word auto-regressively, rather than producing full tokens at once. This
approach enhances both memory efficiency and generation quality. Pre-trained
models, in particular masked language models such as BERT, are usually pre-trained
on a token prediction task from a masked sequence and a next sentence prediction
task (Devlin et al., 2019). For symbolic music, MusicBERT (Zeng et al., 2021)
is pre-trained with a bar-level masking: instead of masking a single token and
leveraging its Octuple representation (Figure 4.7a), the pre-training process masks
a type of feature for all the tokens within a bar. This masking is improved with
quad-attribute masking (Shen et al., 2023). Going further, PianoBART (Liang et al.,
2024), which also uses an Octuple representation, implements a multi-level object
masking strategy, where the masked token can be at the level of an Octuple-element,
the whole Octuple, or ranging over multiple bars. These strategies avoid information
leakage between tokens, as some musical features can be easily inferred from adjacent
tokens. Taking inspiration from the multi-task pre-training approach of the original
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BERT model, Shen et al. (2023) also propose an analogous pre-training task with
next sentence prediction with key prediction. Finally, MuseBarControl (Shu et al.,
2024), a Linear Transformer for controllable generation, implements a pre-training
task aiming at directly incorporating control signals during the pre-training step to
improve the resulting bar-level controllability.

This chapter has reviewed models adapted from NLP for symbolic music pro-
cessing. In particular, we focus on Transformer-based models, on which most of
state-of-the-art models for music analysis and generation are based on. These models
have demonstrated versatility across various tasks and input representations, offering
multiple architectural and training paradigm alternatives that can be well-adapted
for symbolic music processing. Though, because of their complexity and their size,
they remain black boxes. Yet, understanding the musical knowledge they capture
remains valuable and is the focus of a technical contribution presented in Chapter 7.
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The structured overview of NLP methods for symbolic music processing pre-
sented in the first part of this thesis has led to the identification of multiple possible
contributions in the three axis, representations, models and tasks. In this part, we
present technical contributions developed by taking inspiration from existing NLP
methods to adapt them for symbolic music processing.

Therefore, this part is organized following the organization of NLP methods for
MIR developed in the previous part:

• We examine further sequential representations of symbolic music in the
context of event-based tokenizations (Chapter 6). In particular, we explore how
the expressiveness of such tokenizations can be improved. This tokenization
expressiveness can be related to the choice of the initial alphabet, for which we
propose a tokenization strategy based on intervals instead of absolute pitches.
This expressiveness is then studied through the analysis of grouping strategies,
for which we specifically focus on Byte-Pair Encoding (BPE) which aims at
building more informative tokens.

• We then analyze models through the lens of model explainability, focusing on
the attention mechanism (Chapter 7). We focus on a task functional harmony
analysis performed by an encoder-only model and we propose a framework to
analyze the inner attention mechanisms of such model. In particular, we focus
on two behaviors derived from the attention mechanism, with a first focus on
attention spans. We then evaluate the role of individual attention heads in the
sub-task of local key detection that we quantify using Layer-wise Relevance
Propagation (LRP).

• Finally, as an application of NLP methods implemented for a MIR task, we
present Meteor, a Transformer-based model for multi-track music generation
(Chapter 8). More precisely, the model is trained for a task of automatic re-
orchestration by adapting an existing model trained for piano style transfer
which implements a custom attention mechanism with token constraints.
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Improving music sequential
representations’ expressiveness

6.1 Interval-based tokenization for pitch representation . . . . . . . . . . . . . . 80
6.1.1 Intervalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.2 Evaluating intervalization on downstream tasks . . . . . . . . . . . . 83

6.1.2.1 Downstream tasks . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.2.2 Model & pre-training . . . . . . . . . . . . . . . . . . . . . . 85
6.1.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.3 Towards improving token alphabet expressiveness . . . . . . . . . . . 90
6.2 Analyzing byte-pair encoding for monophonic and polyphonic music . . . . 92

6.2.1 Analyzing music byte-pair encoding . . . . . . . . . . . . . . . . . . . 92
6.2.1.1 Comparing text and music BPEs . . . . . . . . . . . . . . . . 93
6.2.1.2 Musical content carried by supertokens . . . . . . . . . . . . 95

6.2.2 Evaluating BPE on musical phrase segmentation . . . . . . . . . . . . 97
6.2.2.1 Task & data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.3 Towards improving token grouping expressiveness . . . . . . . . . . 100
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In Chapter 4, we proposed a formalization of event-based tokenizations seen as
a chosen alphabet with possible grouping strategies. The alphabet describes which
musical features are encoded, and the grouping strategy aims at shortening sequences
by creating longer tokens. However, MIR studies tend to overcome the choice of
the tokenization strategy by relying on existing tokenization that often encode local
characteristics (pitch, velocity,. . . ). Instead, these two aspects may be further explored
to build more musically expressive tokens.

The current chapter studies two attempts towards improve music sequential

79
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representations’ expressiveness with regards of the alphabet and the grouping strategy.

In a first approach, we explore how the choice of the initial alphabet can be more
expressive, so that the atomic elements directly reflect musical attributes. In this way,
we explore how choosing interval-based tokens instead of absolute pitch tokens in the
initial alphabet can later impact a model trained on MIR analysis tasks (Section 6.1).

A second approach is to improve the expressiveness of a tokenization strategy
through a grouping process, which builds more musically informed tokens. In
particular, we study Byte-Pair Encoding (BPE), an algorithm typically used to group
tokens to build words or subwords and its impact on analysis tasks, depending on
the polyphony level of the music (Section 6.2).

6.1 Interval-based tokenization for pitch representa-
tion

This section is based on a work published at the workshop AI for Music
co-located with AAAI 2025 (Association for the Advancement of Artificial Intelli-
gence) (Le et al., 2025b).

A key distinction between text and music lies in the presence of pitch – a fundamental
dimension of music that has no direct counterpart in written natural language. In
event-based symbolic music tokenization alphabets (Chapter 4), the information of
pitch is typically represented through dedicated tokens. Traditional strategies mostly
employ MIDI numbers to encode pitch information: in other words, they most often
rely on absolute pitch encoding. While effective this approach may overlook relational
or contextual aspects between notes.

Instead, one may often memorize music by its melodic contour, considered as
a sequence of intervals unchanged by transposition to different keys, rather than
by their absolute pitches (Dowling and Fujitani, 1971). Similarly, in the context
of tonal music, harmony is based on the relation between the notes constituting a
chord and a tonal center more than their absolute pitches. Musical intervals capture
the relative distances between pitches, emphasizing relationships over fixed pitches,
which aligns more closely with human musical perception. Applied to computational
representations of music, interval-based tokenization may provide an alternative
and more expressive approach to pitch encoding.

In this work, we present tokenization strategies based on intervals that can be
used jointly with absolute pitch encodings. Such tokenizations are shown to improve
model performances in analysis tasks. This work’s contribution is two-fold:
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Figure 6.1: Representations of the sheet music based on absolute and different variants of
intervalization of the REMI tokenization. (Abs.: Absolute pitch encoding)

• We first introduce a general framework to build interval-based tokenization
strategies. This framework is built around representing a chosen reference
(e.g. the melody) with using either absolute or interval-based encoding, while
encoding the remaining content in relation to this reference. We formalize
this approach to ensure it remains flexible and extensible for future potential
adaptations.

• We then show that interval-based tokenization can improve model perfor-
mances on three downstream tasks. Moreover, we show that among the studied
interval-based encoding strategies, optimal tokenization settings depend on
the downstream task and can result in musically meaningful interpretations.

6.1.1 Intervalization

In this section, we propose a formal description of the intervalization process which
aims at transforming a tokenization strategy originally based on absolute tokens
only into a interval-based variant tokenization strategy. Let x be a sequence of note
events:

x = {𝑒1, . . . , 𝑒𝑇 }
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Each note event can be written as 𝑒𝑘 = (𝑝𝑘 , 𝑡𝑘 ) where 𝑝𝑘 ∈ {1, . . . , 128} denotes an
absolute pitch element and 𝑡𝑘 the onset time element associated to the note.

Let xref ⊂ x be a sub-sequence of notes, chosen as reference. xref can correspond
for instance to the bottom-line of the musical content, the skyline, or the melody if
available in the data:

xref = {𝑒ref1 , . . . , 𝑒ref𝜏 }
=

{(𝑝ref1 , 𝑡ref1), . . . , (𝑝ref𝜏 , 𝑡ref𝜏 )
}

xref is chosen to be a monophonic sequence (i.e. without simultaneous events):
𝑡ref 𝑗 ≠ 𝑡ref 𝑗′ for 𝑗 , 𝑗 ′ ∈ {1, . . . , 𝜏}.

The choice of xref induces a partition of x into 𝜏 subsets of events:

x = 𝑆1, . . . , 𝑆𝜏

where 𝑆 𝑗 is defined as the set of notes occurring between 𝑒ref 𝑗 and 𝑒ref 𝑗+1 :

𝑆 𝑗 =
{
𝑒ref 𝑗

} ∪ {
(𝑝, 𝑡) ∈ x

����� 𝑡ref 𝑗 ≤ 𝑡 < 𝑡ref 𝑗+1

(𝑝, 𝑡) ≠ 𝑒ref 𝑗

}
We call intervalization I the process of converting an absolute pitch element into a

pitch interval element. The sequence x is thus transformed into the sequence xrelative:

xrelative =

{
I(𝑒1, xref), . . . , I(𝑒𝑇 , xref)

}
I(𝑒, xref) is defined for 𝑒 = (𝑝, 𝑡) ∈ 𝑆 𝑗 as:

I(𝑒, xref) =
{(
Iref(𝑝ref 𝑗 , 𝑝ref 𝑗−1), 𝑡

)
if 𝑒 = 𝑒ref 𝑗(

Inon-ref(𝑝, 𝑝ref 𝑗 ), 𝑡
)

otherwise

where Iref represents a method specifying the encoding method for reference
pitch tokens, while Inon-ref represents the encoding method for non-reference tokens.

Iref can be chosen as being an encoding using absolute pitches:

Iref(𝑝ref 𝑗 , 𝑝ref 𝑗−1) = 𝑝ref 𝑗

or horizontal pitch intervals (Kermarec et al., 2022) (i.e. where each pitch is encoded
as a horizontal interval with the previous pitch within the reference sequence):

Iref(𝑝ref 𝑗 , 𝑝ref 𝑗−1) = 𝑝ref 𝑗 − 𝑝ref 𝑗−1

In the latter case, the first event is dropped.
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Tokenization xref Iref Inon-ref

REMI-abs – Absolute Absolute

REMI-abs+VPI
ref-melody Melody Absolute Vertical Pitch Interval
ref-skyline Skyline Absolute Vertical Pitch Interval
ref-bottom-line Bottom-line Absolute Vertical Pitch Interval

REMI-HPI+VPI
ref-melody Melody Horizontal Pitch Interval Vertical Pitch Interval
ref-skyline Skyline Horizontal Pitch Interval Vertical Pitch Interval
ref-bottom-line Bottom-line Horizontal Pitch Interval Vertical Pitch Interval

Table 6.1: Tokenizations studied in this chapter, including the original REMI tokenization
(REMI-absolute), and interval-based tokenizations based on REMI. (Abs: Absolute pitch
encoding ; VPI: Vertical Pitch Interval ; HPI: Horizontal Pitch Interval)

Similarly, Inon-ref can be chosen as being an encoding using absolute pitches:

Inon-ref(𝑝, 𝑝ref 𝑗 ) = 𝑝
or vertical pitch intervals (i.e. where each pitch is encoded as a vertical interval in
relation to the simultaneous pitch of the reference sequence):

Inon-ref(𝑝, 𝑝ref 𝑗 ) = 𝑝 − 𝑝ref 𝑗

We give visual examples of these intervalization strategies derived from the REMI
tokenization (Huang and Yang, 2020) in Figure 6.1.

Although the choice of xref, Iref and Inon-ref can be much larger as described
further, we limit this study to the six intervalization strategies listed in Table 6.1
applied to the REMI tokenization using the MidiTok package (Fradet et al., 2021).
Though, we altered the original REMI tokenization by dropping <Velocity> tokens.
Since the datasets are not derived from performance data, the velocity values of
these tokens are only set arbitrarily. Moreover, as our tasks are not concerned with
musical interpretation, we assume that velocity has minimal influence on model
performance.

6.1.2 Evaluating intervalization on downstream tasks

In this section, we present an experimental framework that aims to evaluate the
impact of intervalization on various MIR tasks. More precisely, we consider the
following hypotheses:

(H1) The choice of an intervalized tokenization has a positive impact over an absolute
tokenization on the performance of a model on a task.
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(H2) Given a task, not all intervalized tokenization strategies are equivalent. In
particular, the choice of one specific xref can be more judicious for this task.

Our experiments involve three downstream tasks – era classification, start-of-phrase
detection, and chord inversion identification – further described in the next para-
graph, on which pre-trained and end-to-end BERT models (Devlin et al., 2019) are
evaluated on different interval tokenizations.

6.1.2.1 Downstream tasks

We evaluate the impact of intervalization on three supervised downstream tasks
associated with different datasets. We chose to evaluate the tokenization strategies
on the two types of tasks presented in Section 3.1: a sequence classification task and
token classification tasks (which we also refer to as sequence tagging tasks).

Because we propose to evaluate the impact of intervalization when the reference
is the melody, the datasets are composed of music with a homophonic texture,
characterized by a polyphonic music which include a single melody supported by an
accompaniment (Benward, 2018). In particular, we chose these datasets so that the
melody is played by a single track during each piece. A quantitative description of
the datasets in terms of token count and musical pieces is given in Table 6.2 (bottom).
We focus on the following three tasks:

• Start-of-phrase detection. We first introduce a start-of-phrase detection as a
sequence tagging task. The model is trained to classify each token of a sequence as
being a start-of-phrase or not. We build a synthesized dataset of folk tunes with
generated piano accompaniment which includes start-of-phrase annotations. In
particular, we consider the ESSEN dataset (Schaffrath, 1995) which includes 7k
folk melodies from 47 countries with phrase annotations, which are arranged
for solo piano using a lead sheet piano arrangement model (Zhao and Xia,
2021). Each tune was composed of 5.6 phrases on average. The construction of
this dataset follows a similar approach to that of the MTC-Piano dataset, which
is described in the following Section 6.1.2.2.

• Chord inversion identification. Inspired by the task of figured bass identi-
fication (Ju et al., 2020), we implement a chord inversion identification task
as a sequence tagging task. The model is trained to classify each token as being
part of a root position, first, second, or third inversion chord1. We consider the
When-in-Rome dataset which includes roman numeral labels (Gotham et al.,
2023a) from which only the chord inversion characteristic is extracted. From
this dataset, we only kept Bach chorales, from which we assume the melody
to be the soprano voice. While the dataset does include much more data than

1The theory of functional harmony is further described in Section 7.2.1.
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chorales, other instrumentations, such as piano solo or orchestral pieces, do
not clearly involve a melodic line or a single instrument playing the melody
throughout the whole piece, which can be used as a reference in our evaluation.

• Era classification. This task is a binary sequence classification task. We consider
the OpenScore Lieder dataset (Gotham and Jonas, 2022), which includes voice
and piano pieces by 107 composers from 1730 to 1949. In particular, we char-
acterize each composer by an average year derived from their birth and death
year. We selected the discriminative year, 1865, for this binary classification
task based on the distribution of composition year within the dataset so that
the dataset is balanced between the two classes.

Dataset Task
# tokens
(# pieces)

POP909 Pre-training 12.1M (2897)
MTC-Piano Pre-training 12.4M (18.1k)
String quartets Pre-training 3.2M (121)

Total Pre-training 27.8M (21.1k)

Lieder Era classification 2.7M (1356)
ESSEN-Piano Phrase detection 3.4M (6926)
Bach chorales Chord inversion identification 204k (371)

Table 6.2: Description of the datasets used for pre-training and downstream tasks, namely
era classification, start-of-phrase detection and chord inversion identification. The count of
tokens is given in terms of REMI-absolute tokens.

6.1.2.2 Model & pre-training

For performing these tasks, we chose to implement a Transformer encoder-only
model on which a classification layer is plugged. We consider a pre-training +
fine-tuning strategy, following the model MidiBERT-Piano (Chou et al., 2024). We
gather three datasets for pre-training for which quantitative descriptions are given
in Table 6.2 (top):

• POP909 (Wang et al., 2020a) includes Chinese pop songs with tracks annotated
as “melody”, “lead”, and “piano”. The melody is considered as being the
“melody” and “lead” tracks merged together.

• We introduce MTC-Piano, a dataset that compiles piano arrangements of Dutch
folk melodies sourced from the Meertens Tune Collections (MTC) (Van Kra-
nenburg et al., 2014). More precisely, the MTC dataset contains monophonic
folk tunes with several annotations, including chords. Therefore, by consid-
ering each tune as a lead sheet, we generate a piano accompaniment with the
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AccoMontage model (Zhao and Xia, 2021). Beyond serving as a large dataset of
polyphonic music well suited for pre-training in this current work, this dataset
has also been compiled to make use of the musical phrase annotations in the
work related to BPE presented later in this chapter (Section 6.2).

• The OpenScore String quartets collection (Gotham et al., 2023b) features string
quartets from European composers spanning the classical to late-romantic
periods. The melody is approximated as the part played by the first violin.

Using the union of these corpora as a pre-training dataset, we consider a
Transformer-based encoder-only architecture on an unsupervised masked language
model pre-training task (Devlin et al., 2019). Using this common architecture, we
pre-train seven models, one for each tokenization strategy (Table 6.1). For the fine-
tuning process, we use the datasets described in Section 6.1.2.1 to train the model on
their corresponding downstream task.

The implementation of the model is based on the MidiBERT-Piano model (Chou
et al., 2024). However, while the latter consists of 12 layers with 12 heads each, we
use a smaller model with 3 layers and 8 heads per layer. The fine-tuned models
then adds a classification head on top on the pre-trained model, with its nature
depending on the downstream task. This classification is a self-attention layer with
a linear layer for the full sequence classification task and a pair of linear layers for
the two sequence tagging tasks. In particular, the pre-trained model weights are not
frozen during the fine-tuning process. For each downstream task, we evaluate the
three intervalization strategies on both an end-to-end model (i.e. the full model is
initialized randomly and trained from scratch) and a pre-trained + fine-tuned model.

This configuration results in a pre-trained model with 14M parameters, which is
eight times lighter than MidiBERT-Piano. Thus, using our training hyperparameters,
two models can fit into a single 12GB Tesla P100 GPU. The models are pre-trained
until an early stopping on the validation accuracy of 10 epochs, resulting in approx-
imately one week of pre-training for all the seven models on our hardware. The
fine-tune process is stopped after an early stopping of 3 epochs.

6.1.2.3 Results

We evaluate models on the above downstream tasks following the two hypotheses
(H1) and (H2) presented above. To this end, we consider various settings regarding
intervalization strategies presented in Table 6.1, namely, an absolute tokenization
and two intervalized tokenization with 3 references each. For each downstream
task, we evaluate each tokenization strategy on both an end-to-end and a pre-trained
model. Each model is trained and evaluated on three seeds of the dataset splits.
Therefore, in total, 42 trainings have been performed on each downstream tasks by
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allowing all the possible combinations:((1 REMI-abs) + (1 REMI-abs+VPI + 1 REMI-HPI+VPI) × (3 references))
× (1 pre-trained + 1 end-to-end)
× (3 seeds)
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Figure 6.2: Performance comparison between absolute and intervalized tokenization strate-
gies on the three downstream tasks with non pre-trained and pre-trained models. The
intervalized model is based on the reference resulting in the best performance.

Impact of intervalization (H1) – First of all, for the hypothesis (H1), we focus on
comparing the performance of models using an absolute tokenization in comparison
with intervalized ones. In Figure 6.2, we compare the absolute encoding model with
three interval-based models using different references, and report the performance
of the best-performing intervalized model.

Our results show that, for all tasks, there exists an interval-based model that
outperforms its absolute-encoding counterpart, both in pre-trained and end-to-end
settings. However, such improvements range from a marginal 1.2% performance
increase in the case of a pre-trained model on era classification (i.e. the sequence
classification task) to a significant 6% increase with an end-to-end model trained
on start-of-phrase detection. Moreover, our results show that pre-training models
systematically outperform end-to-end models. On the three tasks, pre-trained model
performances are on average 1.2 times better than their end-to-end counterparts,
with variations depending on the task.

Therefore, for the hypothesis (H1), we can state that there is a positive impact of
intervalized tokenization over absolute ones, more particularly for token classifica-
tion tasks.

Impact of intervalization references (H2) – Beyond the raw contribution of in-
tervalization for the downstream tasks, we then analyze the impact of the chosen
reference on performance to evaluate hypothesis (H2). More specifically, we evaluate
whether certain references are better suited to specific tasks. To this end, we compare
models trained using different references against one another.
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Figure 6.3: Count of best intervalization references when comparing intervalized models
with various references and the absolute. For each task, we consider two pre-trained and
two end-to-end models trained on the tokenizations shown in Table 6.1. This results in 12
comparisons by task, where each comparison involves three intervalization references tested
against an absolute tokenization.

For each task, for each split of the dataset among the three considered seeds, we
perform two comparisons – one for the end-to-end setting and one for the fine-tuned
setting – between the model trained without intervalization and the three models
trained with intervalized tokenizations, each based on one of the three reference
types, for a given setting of Inon-ref and Iref. We then count the number of times that
the choice of a particular reference leads to the best result among these four models.
In total, we therefore proceed to 12 comparisons per task: (3 seeds × (2 pre-trained
models + 2 end-to-end models)). Each comparison involves 4 models (3 intervalized
+ 1 absolute). The counts of the best models associated with their reference are shown
in Figure 6.3.

On the whole, for the hypothesis (H2), we show that there is a preferred reference
xref which depends on the considered task.

Models trained with a melodic reference achieve the best performance in 11 of
12 comparisons for the start-of-phrase detection task in contrast with the skyline or
bottom-line references. This confirms intuitions from music theory regarding the
role of melody in phrasing highlighted, among others by Schoenberg (Schoenberg
et al., 1999, p. 3):

Phrase endings may be marked by a [...] melodic relaxation through a drop in
pitch, the use of smaller intervals and fewer notes;

For the era classification task, the choice of the intervalization reference does not
show a significant impact on the model performance. Unlike the other tasks, which
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involve local token tagging, this task focuses on classifying entire sequences into
more abstract classes. Such a higher-level task may explain why tokenization plays
a less critical role in this context. Further experiments could be considered with
more consistent era labelling, for instance considering more discriminative era labels,
such as baroque and romantic era pieces. Finally, for the task of chord inversion
identification, the bottom-line reference leads to the best models in 10 of the 12
comparisons. This result may not be surprising given that chord inversion are most
often defined by the bass note constituting the chord. Though, we further investigate
potential explanations for the effectiveness of this intervalization reference compared
to the others in the next paragraph.
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(b) First inversion
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(c) Second inversion
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(d) Third inversion
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Figure 6.4: Histograms of vertical pitch interval tokens predicted as root position, first,
second or third inversion. The hatched part of a bar represents the proportion of false
positives. Red highlights indicate the intervals that occur in each chord inversion. The
notation (+1) indicates an additional octave.

Musical attributes reflected by the intervalization – We focus on the task of chord
inversion identification and we analyze how a tokenizer with a bottom-line reference
classifies each token. We study the frequency of vertical pitch tokens classified by
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the model as root position, first, second, or third inversion (Figure 6.4).

This shows that particular sets of vertical pitch intervals are more prominent
within specific inversions. In particular, these more common interval values match
the musical definitions of chord inversions. For example, a major (resp. minor) third
in combination with a fifth in relation to the bass note defines a root position major
chord (resp. minor chord) (Figure 6.4a). The presence of occurrences outside these
musical definitions of major/minor/dominant chords can reflect the presence of
chord extensions or note embellishments such as passing notes. Moreover, analyzing
the proportions of false positives among the predictions can explain some of the
model’s errors. For example, for first inversions (Figure 6.4b), the largest number of
false positives occur with thirds and sixths, which are intervals that also compose
chords in root position and second inversion respectively.

Going further, various four-part writing principles (Peters, 2016; Benward, 2018)
can be inferred from these frequency distributions. For example, Figure 6.4a and 6.4b
show that third intervals (m3 and M3) occur more often with an additional octave
than within the same octave. This aligns with voice spacing rules, which typically
recommend that bass and tenor voices are not too close. Similarly, Figure 6.4d shows
that the bass is not doubled at the octave (P8) in the case of a third inversion. This
is consistent with a four-part harmony rule stating that the seventh of a dominant
seventh chord is typically not doubled.

These experiments show that a more expressive alphabet based on interval tokens
to encode pitch information, can potentially improve the performance of models
initially trained with basic absolute pitch tokens. Moreover, this increased expressive-
ness can also capture established musicological principles. Besides these quantitative
results, the primary contribution of this section is a formal description of interval-
based tokenizations, that may serve as a foundation for developing further expressive
alphabets.

6.1.3 Towards improving token alphabet expressiveness

This section proposes possible futur directions to experiment with interval-based
tokenizations, based on the formalism presented above.

The previous experiments limited intervalization strategies to three types of xref
In particular, we have assumed xref ⊂ x. By releasing this, xref can be chosen as a
musically meaningful reference such as a reference sequence composed only of the
tonal center of a piece, which may help in tasks such as harmonic analysis.

In addition, we have implemented only two types of interval encodings, namely
horizontal and vertical pitch intervals. However, similarly to pitches which can be
encoded as <pitch-class> and <octave> (Li et al., 2023c), an interval can also be
considered as <octave-interval> and <interval-class> as presented in Figure 6.5.
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Such an intervalization strategy may allow to directly disentangle octave relations
between the notes and interval classes.

Interval classes: V.Oct / H.Oct (Vertical / Horizontal Octave)

+ V.I.C / H.I.C (Vertical / Horizontal Interval Class)
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Figure 6.5: Examples of intervalized tokenizations based on interval classes instead of pitch
intervals. (Abs.: Absolute pitch encoding)

Moreover, while interval-based tokenizations can be used for analysis tasks, they
cannot all be used for generation purposes, in particular for tokenizations where
Iref are horizontal pitch intervals because the generated sequence will not refer to
a unique musical sentence. Consequently, tokenizations can be considered where
absolute pitches are periodically indicated (for example, at the beginning of each
bar), and with intervals representing horizontal/melodic and vertical/harmonic
relationships relative to this periodic absolute reference.

Finally, we have only considered tokenizations based on REMI. However, the
intervalization process can be applied to any tokenization strategy in which pitches
are encoded as absolute values. Time-related tokens (i.e. <Bar> and <Position> for
score-based tokenizatio, or <Time-Shift> for performance-based tokenization(Oore
et al., 2018)) are not affected by pitch encodings. Therefore, a study comparing
both time and pitch representations may show possible combinations of encodings
resulting in a better modeling of symbolic music.

However, beyond interval-based tokenization, taking action on the alphabet – the
very first component of most MIR study pipelines – might be heavily mitigated by
the choice of the following elements of the pipeline, such as token grouping or going
further beyond the representation aspects, the model architecture and mechanisms.
In other words, although enhancing the alphabet’s expressiveness leads to some
improvements on our selected tasks and models, it may remain too minor a factor to
have a meaningful impact for more general tasks, such as music generation. In the
following section, we take a step further by examining the expressiveness of grouping
strategies applied to elements of the alphabet.
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6.2 Analyzing byte-pair encoding for monophonic and
polyphonic music

This section is based on a work published at the workshop NLP for Music and
Spoken Audio (NLP4MusA) co-located with ISMIR 2024 (International Society of
Music Information Retrieval) (Le et al., 2024).

As described in Chapter 2, text disposes of natural ways to group characters into
words, such as using whitespaces to separate groups of characters in several lan-
guages. In contrast, music lacks such explicit mechanisms for grouping elements of
the alphabet into coherent “musical words”.

In NLP, words learned using a data-driven way often rely on subword tokeniza-
tion algorithms such as Byte-Pair Encoding (BPE). The algorithm relies on creating
new subword tokens by iteratively merging the most recurring pairs of successive
tokens in a corpus until a chosen vocabulary size is reached. In the following, we
call atomic elements the tokens from the initial vocabulary and supertokens the tokens
added to the vocabulary through BPE (Figure 6.6).

BPE has been applied to symbolic music tasks, as described in Section 4.1.2.1.
It has been typically implemented to shorten token sequences (Liu et al., 2022), or
evaluated empirically as a pre-processing step for music generation (Fradet et al.,
2023a) or analysis tasks (Zhang et al., 2023). However, the resulting vocabulary and
the impact of the type of music data given to the algorithm have not be thoroughly
studied. Therefore, this work explores two aspects of BPE applied to symbolic music,
seen as a mean of creating more expressive musical tokens:

• We first propose a statistical analysis of the vocabulary of tokens obtained from
symbolic music. We examine its behavior in comparison to BPE applied to
textual data, and we apply BPE on diverse types of music with various degrees
of polyphony.

• Some musical properties captured by BPE reflected through this first analysis
then prompts a quantitative analysis of the effects of BPE on a model trained
on a task of musical phrase segmentation. In particular, we study its impact on
monophonic and polyphonic piano music.

6.2.1 Analyzing music byte-pair encoding

In this section, we present analyses of the vocabulary produced by BPE when ap-
plied to text and music. We first analyze supertokens resulting from text-BPE and
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Figure 6.6: Byte-Pair Encoding (BPE) algorithm applied to music tokens using a TSD-like
tokenization (Fradet et al., 2023a). The most recurring pair of tokens is merged iteratively to
create new supertokens, as a combinations of atomic elements with possible already created
supertokens. BPE jointly results in decreasing the length of sequences while increasing the
size of the vocabulary.

music-BPE with various types of instrumentation. We qualitatively observe that
supertokens can convey high-level musical content for phrase segmentation, which
in turn motivates a quantitative analysis of the impact of BPE on this task.

6.2.1.1 Comparing text and music BPEs

Musical notes are often compared to text at the level of characters (Hirata et al.,
2022). Deep learning models have been shown to be more efficient when dealing
with characters grouped into (sub)words (Shapiro and Duh, 2018; Tay et al., 2022).
Therefore, we study the BPE results when processed, on text and music, in order to
observe common or distinctive operating regime on such data with various languages
and instrumentations. Text data includes alphabetic2 languages from various regions,
extracted from the XLNI dataset (Conneau et al., 2018b) on which we run BPE on
100k premises. For music, we compare monophonic folk tunes, classical piano, string

2Experiments have also been conducted on syllabic (Japanese) and logographic (Chinese, Korean)
languages, that show major differences due to the different nature of the atomic elements of their
initial vocabulary.
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quartet, and orchestral corpora with similar sizes and tokenize these datasets using
REMI (Huang and Yang, 2020) from which <Velocity> tokens are removed.
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Figure 6.7: (Top) Frequency of the created supertokens through the vocab size increasing
with the BPE steps, for different styles of music and multilingual text data.
(Bottom) Average length of already created supertokens through BPE iterations for musical
and text data. The initial vocabulary size of each tokenization is indicated.

We first study the occurrence frequency of the newly created supertoken within
the corpus, at each step of the training (Figure 6.7, top). To make the corpora
and vocabularies comparable, supertoken frequencies are normalized by the initial
corpus length, and the BPE iterations are aligned with the resulting vocabulary size.
Interestingly, the vocabularies obtained on music or text through BPE do not show
major differences with respect to the decay rate or the order of magnitude of the
frequencies.

We also compute the mean length of the supertokens through the BPE steps
(Figure 6.7, bottom). The evolution of supertoken length differs between text and
music, depending on the instrumentation. While monophonic supertokens are gen-
erally longer than polyphonic ones, orchestra supertokens surprisingly appear to
be longer than piano or string quartet ones. An in-depth study of the constructed
vocabulary shows that the orchestral vocabulary predominantly consists of “har-
monic” supertokens formed of simultaneous notes. In contrast, piano and string
quartet vocabularies include both simultaneous and consecutive notes. This differ-
ence causes BPE to struggle to build long piano or string quartet supertokens. On
a separated experiment, we observed that it takes over 10 times more steps on a
piano corpus to get an average length comparable to that of the vocabulary obtained
on the monophonic corpus. This assumption could be quantified through further
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experiments by comparing supertoken lengths in terms of “musical length” (i.e. the
number of sub-beats included in the supertoken) instead of raw counts of aggregated
atomic elements.

Moreover, when considering an alphabet which only keeps <Pitch> tokens, we
show that monophonic supertoken lengths have a regime closer to that of text for
this range of BPE merges (Figure 6.7, "PitchOnly" curve), while polyphonic curves
still stand out. We can thus posit that the differences between the music and text
curves might be due to simultaneity and timing information, which are inherent to
music.

6.2.1.2 Musical content carried by supertokens

So far, we have drawn a broad characterization of the BPE vocabularies, let us now
zoom in and try to delineate which supertokens are present in a specific context.
Borrowed from text, the terms “musical phrase” or “musical sentence” (Nattiez, 1990)
denote a part of the music which can give the impression of a complete statement by
its own. The TAVERN dataset (Devaney et al., 2015) include such phrase annotations
for theme and variations for piano by Mozart and Beethoven. Similarly to text words
or expressions that may have particular places within a sentence (e.g. link words
such as “On the one hand, . . . ” at the beginning of sentences, or tag questions such
as “. . . , isn’t it?” at the end), we analyze the relation between musical supertokens
built via BPE and musical phrases.

In addition to REMI, we perform this analysis using a Structured (Hadjeres and
Crestel, 2021) tokenization with pitches encoded as intervals (Section 6.1) with
xref being the skyline notes. In contrast with the REMI tokenization used in the
last and following sections, we use the Structured tokenization in order to take
advantage of both Structured’s relative encoding of rhythm with <Time-Shift> to-
kens and the relative encoding of pitches through <Horizontal_PitchInterval> and
<Vertical_PitchInterval>. We considered a 1024-merge BPE.

Tokenizer
Overlapping supertokens (↓)
Random split Phrases

Absolute REMI 58% 47%
Absolute Structured 69% 1.3%

Interval REMI 60% 32%
Interval Structured 71% 4.2%

Table 6.3: Ratio of overlapping supertokens between two phrases in the TAVERN dataset
for multiple tokenization strategies. This ratio is compared with the ratio of overlapping
supertokens when pieces are split randomly.
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Supertokens and phrase boundaries – A first observation is that supertokens
are not likely to overlap musical phrases (Table 6.3). We consider the ratio of
supertokens built through BPE that overlap two musical phrases, in comparison
with this ratio if the piece was split randomly with the same number of chunks as
the BPE segmentation. Using the Structured tokenization, both with absolute- or
interval-based pitch encodings, less than 5% of the supertokens among the tokens of
the sequences do overlap phrases. In contrast, randomly splitting the piece results
in a 69% to 71% overlap ratio, indicating that supertokens are unlikely to span
across phrase boundaries. This phenomenon is less marked with REMI but the
segmentation in musical phrases still decreases the ratio of overlapping supertokens
compared to a random segmentation.
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Figure 6.8: (Top) First most common start-of-phrase supertoken from Mozart’s 7 Variations
on "Willem von Nassau" (K 25), Variation VII and Beethoven’s 12 Variations on "Menuet a la
Vigano" (WoO 68), Variation VII.
(Bottom) 9-long common ending supertoken (10th most common) from Beethoven’s 10
Variations on "La stessa, la stessissima" (WoO 73), Variation VII and Mozart’s 12 Variations on
a Minuet by Fischer (K 179), Variation IV. The tokenization is Structured + intervals.

Start & end-of-phrase supertokens – We then analyzed the supertokens occurring
at the beginning and end of musical phrases within the TAVERN dataset. In partic-
ular, choosing the Structured tokenization allows this analysis to be key signature-
independent and bar position-independent. The most recurrent start-of-phrase
supertoken appears to be a melodic rising perfect fourth (Figure 6.8, top), which
follows musicology studies (Meyer, 1973, p.145):

An upbeat interval of a perfect fourth, moving to the tonic [...] may be
understood as a rhythmic-harmonic event emphasizing the tonic on which the
melody proper begins.

Most represented end-of-phrase supertokens include descending arpeggio pat-
terns on the tonic chord (Figure 6.8, bottom). This also verifies some musicological
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observations (Huron et al., 1996):

Melodic passages tend to exhibit an arch shape where the overall pitch contour
rises and then falls over the course of a phrase or an entire melody.

Similar to how BPE can capture syntactic rules in text, this qualitative analysis
shows that musical supertokens also convey high-level musical information when
considering their relation with musical phrases.

The initial analysis of BPEs across different instrumentations suggests that vocab-
ularies derived from monophonic and polyphonic corpora differ (Section 6.2.1.1). Ad-
ditionally, the second qualitative analysis indicates that BPE may capture musically
relevant information for phrase segmentation (Section 6.2.1.2). These preliminary
findings therefore motivate a more quantitative evaluation of the impact of BPE on
monophonic and polyphonic data in the context of a musical phrase segmentation
task.

6.2.2 Evaluating BPE on musical phrase segmentation

In the literature, BPE applied to MIDI-derived tokenization has been mainly evalu-
ated on music generation (Fradet et al., 2023a) or sequence classification, in particular
composer classification, on a general multi-track dataset (Fradet et al., 2023a) or
specifically piano music (Zhang et al., 2023). Given our preliminary results from
the previous sections, we aim to quantitatively evaluate BPE specifically on a task of
musical phrase segmentation for monophonic and polyphonic datasets.

From a technical standpoint, our experiments rely on the MidiTok package (Fradet
et al., 2021) to handle the tokenization of MIDI files, and use Transformer model
implementations provided by the HuggingFace library (Wolf et al., 2020).

6.2.2.1 Task & data

We consider the musical phrase segmentation task presented in Section 6.1.2.1, where a
model is trained to tag each token of a sequence as being a start-of-phrase or not. For
BPE sequences, if a start-of-phrase occurs within a supertoken, the whole supertoken
is annotated as being a start-of-phrase.

We perform this task on two types of music: monophonic and polyphonic piano
music. For this purpose, we first performed this task on the MTC dataset (Van Kranen-
burg et al., 2014) composed of monophonic Dutch folk tunes and including phrase
annotations. For the choice of a polyphonic dataset, while the TAVERN dataset (De-
vaney et al., 2015) does include phrase annotations, the comparison would be less
fair given its limited size: the MTC dataset includes 101 times more phrases than
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TAVERN. Moreover, the nature of classical-style musical phrases, generally based on
cadences (Spencer and Temko, 1994), may differ from folk music phrases, based on
melodic contours (Huron et al., 1996). Therefore, for a fairer comparison, we discard
TAVERN as our polyphonic dataset and we rely on the MTC-Piano dataset presented
in Section 6.1.2.2. It consists in a synthetic dataset of folk music piano arrangements
from the MTC dataset generated by the AccoMontage model (Zhao and Xia, 2021)
aligned with the original phrase annotations, which gives a dataset of polyphonic
piano music with folk music phrases which is 55 times larger than TAVERN. We
tokenize both datasets using REMI (Huang and Yang, 2020) and remove the Velocity
tokens, wishing to focus on the impact of BPE on pitch and rhythm information.

Note that the non-BPE dataset is by design more unbalanced than the BPE one.
In the polyphonic setting, the proportion of start-of-phrases increases from 1.2% in
the whole dataset to 3.3% after 128k BPE merges. In contrast, for the monophonic
dataset, only 2% of tokens are annotated as start-of-phrases without BPE while 27%
of (super)-tokens are considered as start-of-phrases after the same number of BPE
merges.

6.2.2.2 Results

We trained a 2-layer Transformer encoder-only model with 8 heads per layer and a
common embedding size between BPE and non-BPE vocabularies on each dataset. In
contrast to Section 6.1, where we use a 3-layer model, we reduce the size of the part
dedicated to Transformer encoders to compensate for the increased embedding size
resulting from the larger vocabulary. We evaluate each model on 3 different splits
of the datasets, using the F1-score of the start-of-phrase label prediction. As our
experiments focus on representation impact, we chose to have light models rather
than ones achieving optimal performance.

Performance on the task – The polyphonic setting of our experiment seems to indi-
cate that BPE can have an impact on performance. Indeed, unlike Zhang et al. (2023)
also focusing on piano music, who demonstrated on a sequence global classification
task that a BPE (with the initial vocabulary size ×4) does not result in significant
improvements, we see on this token classification task that the performance increases
with the number of merges (Figure 6.9, top).

Our results on the monophonic dataset show even that BPE with too few number
of merges can degrade the performance (Figure 6.9, bottom). This surprising behavior
also occurs in NLP tasks, where character-based models can outperform subword-
based models (Chung et al., 2016).

Content of the supertokens – Figure 6.10 describes the “melodic” content of the
supertokens created along BPE steps, i.e. the proportion of supertokens having
𝑛 <Pitch> atomic elements. An analysis of supertokens reveals that early merges
tend to produce structural supertokens, such as combinations of <Bar> and <Beat>
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Figure 6.9: Performance of the models improved with BPE on the task of start-of-phrase de-
tection with polyphonic and monophonic datasets. f1-score for start-of-phrase classification
on the polyphonic dataset (top) and on the monophonic dataset (bottom) averaged over the
3 splits.

(Figure 6.10 gray area: proportion of created supertokens with 0 <Pitch> atomic
element), while melodic patterns emerge later, but at different rates for monophonic
and polyphonic datasets.

At 128 merges (Figure 6.10, dashed line), 26% of monophonic supertokens do
not include any <Pitch> atomic element (gray area). In contrast, this ratio is only 9%
for polyphonic, most of the supertokens are composed of 1 <Pitch> atomic element
(yellow area) and 7% already contain 2 <Pitch> atomic element (green area). Fewer
melodic patterns, which are more likely to indicate phrase boundaries in monophonic
tunes (Huron et al., 1996), may explain why the BPE model performs better only
after a certain number of merges.

In the monophonic dataset we also see that, after too many merges, the model
performance drops (Figure 6.9, bottom). An analysis of the supertoken length
shows that, after 128k merges (not shown), monophonic supertokens are on average
38.6-long (compared to 8.4 for polyphonic ones). Indeed, the smaller size of the
monophonic dataset (3 times smaller than the polyphonic one) leads late steps
supertokens to capture long but rare patterns that might be less relevant for this task
of phrase segmentation.
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Figure 6.10: Ratio of supertokens containing 𝑛 <Pitch> atomic elements in the vocabulary
for each number of BPE merges.

6.2.3 Towards improving token grouping expressiveness

In this last section, we show that BPE behaves differently depending on the type of
music it is trained on, both with a descriptive and a quantitative approach through a
downstream task. More precisely, on this task, we confirm the impact of instrumen-
tation on the model performance and show that the number of BPE merges should
be chosen carefully. In particular, this hyper-parameter can be an obstacle, as certain
cases may require a large number of BPE merges, leading to additional tokenization
training time. While our study outlines general trends in BPE behavior, identifying
a rule of thumb for the number of merges based on data or task would be a major
improvement towards the practical use of subword tokenization for symbolic music.

Moreover, while we focus on REMI tokenization, the initial tokenization itself
may significantly influence the effects of BPE or other subword strategies. Unlike text,
musical supertokens can vary greatly depending on both the tokenization method
and the underlying data. Moreover, our results show that BPE primarily aggregates
temporal structural information, while tokenization strategies represent time in
different ways (Section 4.1.2), such as through absolute positions using combinations
of <Bar> and <Position> in REMI, or a single <Time-Shift> in MIDI-like tokenization.
Thus, beyond the number of merges, the choice of initial tokenization is also a key
factor to consider for the application of BPE.
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6.3 Tokenization expressiveness or model power?

In this chapter, we explored how improving the expressiveness of event-based tok-
enization may improve a model performance on downstream analysis tasks. This
can be done through a choice of musically relevant atomic elements of the alphabet
such as intervals or by implementing grouping strategy such as BPE.

However, in these works, we fixed the model architecture so that only the to-
kenization is the impactful factor. A thorough investigation into the relationship
between music representation and model architecture and size remains essential.
Indeed, while choosing a judicious tokenization can possibly lead to better per-
formance, a larger model or equipped with particular mechanisms may result in
similar performances with “weaker” tokenization. In the same way that sufficiently
large LLMs can learn meaningful linguistic features through generic pre-training
tasks (Clark et al., 2019), a large enough model processing symbolic music might
also be capable of learning by itself musically relevant token groupings or musical
features that could otherwise have been defined a priori in the alphabet. We believe
that a quantitative evaluation of the performance gained thanks to the tokenization
choice or the model size may be a promising avenue to explore for future works.
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Attention-based models have demonstrated state-of-the-art performance in sev-
eral analysis and generative tasks in symbolic MIR. However, they are often con-
sidered as black boxes. This aspect may limit one’s ability to understand, validate
and trust a model’s decision. For instance, while human-AI co-creative tools are
increasingly common, musicians are more likely to trust and engage with models that
provide interpretable feedback aligned with established musical theory or practice.

In this chapter, we explore models under the realm of explainability (Section 7.1).
To this end, we present an end-to-end model for functional harmony analysis (Sec-

103



104 CHAPTER 7. EXPLORING ATTENTION-BASED MODEL INNER MECHANISMS

tion 7.2) in which we aim to perform model explainability, in particular through
mechanistic interpretability. More precisely, we focus on the attention mechanism, by
analyzing the patterns within attention matrices (Section 7.3) and the relevance of
attention heads in particular in the context of local key detection (Section 7.4). The
work presented in this chapter is still ongoing and includes incomplete, unfinished,
or currently unexplored research directions.

7.1 Model explainability through mechanistic inter-
pretability

An important domain in artificial intelligence research focuses on model explainabil-
ity or interpretability and aims at understanding complex models. They are often
considered as “black boxes” because their training often results in too much complex
states to be easily interpretable. From a technical standpoint, such interpretability
can be performed through various ways (Bereska and Gavves, 2024):

• Behavioral interpretability focuses on input-output relationships, indepen-
dent of the model’s internal structure.

• Attributional interpretability links output decisions to specific features char-
acterizing the input (e.g. specific dimensions of a multi-dimensional input).

• Concept-based interpretability uses probing tasks different from the original
task to assess whether the model has captured high-level concepts

• Mechanistic interpretability analyzes a model through its inner mecha-
nisms, such as connections between layers, hidden states, or self-attention
for Transformer-based models.

In NLP, several studies have focused on model explainability (Zhao et al., 2024a).
In particular, mechanistic interpretability studies have focused on the attention mech-
anism. Studies have shown that attention heads play different roles in a task of
machine translation and specifically focus on particular information such as token
positions, syntactic structures of rare tokens (Voita et al., 2019). For BERT models,
these heads can attend to specific delimiter tokens such as punctuation or syntactic
objects such as verbs or nouns (Clark et al., 2019). The importance of these different
attention matrices is also task-dependent, with their contributions varying across
downstream applications (Kovaleva et al., 2019).

Models’ inner mechanisms can be explored following this global framework:

(a) Select a feature derived from an internal mechanism of the model to analyze.
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(b) Choose a dataset and segment it according to discriminative characteristics. In
our case, we consider musically relevant characteristics.

(c) Compare the behavior of the selected feature across the different classes or
types of data defined by those characteristics.

In the following, for (a), we consider two features: attention span extracted from the
attention matrices (Section 7.3) and attention head relevance (Section 7.4).

In-depth analysis of model interpretability remains under-explored in MIR (Sec-
tion 9.1.3). It is typically treated as a secondary finding rather than a central research
objective (Dong et al., 2023). In our work, for the item (b) of our presented frame-
work, we specifically focus on a model’s self-attention mechanism interpretability
in the context of functional harmony analysis. This task suits well a framework of
attention analysis as it encompasses the analysis of long-term attributes such as local
key detection or chord segmentation, and short-term attributes such as chord degree,
quality or inversion identification.

7.2 Models for functional harmony analysis

We first present models considered in this chapter trained for functional harmony
analysis. This task aims at labeling chords through their function within a tonal
context. We then present an end-to-end model trained on this task and we compare
its behavior with a pre-trained model.

Our model does not achieve state-of-the-art performance, but its results re-
main comparable and within a competitive range. We then use this model in
Sections 7.3 and 7.4 to illustrate the core contributions of this chapter, namely
tools for Transformer-based model explainability through the prism of the attention
mechanism.

7.2.1 Functional harmony analysis

In the context of Western tonal music, functional harmony is a system of rules
designed to give direction to chord progressions by assigning functions to these
chords in relation to a key (Caplin, 1998). This creates effects such as harmonic
tension or release (Lerdahl and Jackendoff, 1996) with particular patterns such as
cadences. This theory plays a central role in tonal music, as it is often compared to
grammatical structures in language, as previously explained in Section 2.2.2.

More formally, a chord function can be characterized by multiple features, in-
cluding these main characteristics:
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• The local key or local tonality, for example C major. It can be different from the
global key of the piece and can change throughout a piece due to modulations.
In the following, “key” and “tonality” will be used interchangeably.

• The chord degree characterizes the position of the chord in relation to the local
key. For example, the fifth degree in a C major key is based on the note G.

• The quality of the chord which specifies whether the chord is major, minor,
dominant, . . . .

• The chord inversion specifies the vertical order of the notes of the chord. For
example, a second inversion of a C major chord is defined with a G as root note.

• The root note of the chord designates the lowest note of the chord. It can differ
from the root note due to the inversion, for example when a note is held as a
pedal.

From a computational standpoint, other features such as harmonic rhythm, pitch
class set or 4-part voices identification, can be added for better performances (Chen
and Su, 2018; Nápoles López et al., 2021).

Chord roles are often annotated with roman numeral labels (Figure 7.1a), so that
functional harmony analysis is often referred to as Roman Numeral Analysis (RNA).
The roman numeral reflects the characteristics of the chord, as shown in Figure 7.1b.
From these annotations, common patterns can be defined. For example, a perfect
cadence depicts a sequence of V to I chords, both in root position. In particular, such
patterns are defined regardless of the absolute key signature because chords are defined
by their degree relative to the local key signature. For further insights into roman
numeral analysis, refer to (Benward, 2018).
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(a) Reduction of the beginning of the Bach’s Prelude in C Major (BWV 846). The RNA is written at
the bottom of the staff, with their equivalent analysis using absolute pitch annotations at the top.
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(b) Example of a roman numeral annotation describing the features of a chord.

Figure 7.1: Roman numeral annotations used for functional harmony analysis.
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These annotations are however prone to annotator disagreement (e.g. a same set
of notes can be interpreted differently based on the context) with various levels of
discrepancy, from chord function to the actual roman numeral label (Devaney et al.,
2015; Koops et al., 2019).

Functional harmony analysis in MIR – Multiple machine learning models have
been developed to perform automatic functional harmonic analysis. To this end,
most studies have considered functional harmonic analysis as a multi-objective task.
Such sub-task describes a particular feature of the chord, which are then put in
relation in order to derive the roman numeral label. This multi-task framework
has been then widely used to perform functional harmonic analysis with models
such as recurrent networks (Chen and Su, 2018; Micchi et al., 2020, 2021), convo-
lutional networks (Nápoles López et al., 2021; Nápoles López, 2022), graph neural
networks (Karystinaios and Widmer, 2023) or with audio data (Fricke et al., 2024).

Transformers have also been used to perform this task. Harmony Trans-
former (Chen and Su, 2019, 2021) is a model based on Transformer-based encoder-
decoder. The encoder aims at dividing the score into chord regions, from which the
decoder predicts the corresponding roman numeral label.

RNBert (Sailor, 2024) is a Transformer-based encoder-only model which relies on
a pre-trained MusicBERT (Zeng et al., 2021). It is fine-tuned on RNA on 8 sub-tasks
and comes in two versions: an unconditioned one, and a key-conditioned version
– either using teacher forcing or an initial key detection step – followed by post-
processing steps (e.g. a Viterbi algorithm to avoid too brief key changes). It is trained
on a dataset of 1.4k scores with RNA annotations. Regarding representations, RNBert
includes a conversion between the event-based tokenization of MusicBERT based on
Octuple and a time-slice-based tokenization used for RNA. Using a time-sliced-based
tokenization (Section 4.1.1) is necessary for RNA because a note can change its tonal
function through time, requiring it to be annotated with different labels at different
moments.

7.2.2 An end-to-end model for roman numeral analysis

In this section, we present the technical details of the model performing RNA, based
on a BERT architecture, as well as the performances reached on this task.

Representation – While BERT models for symbolic music are usually trained using
an event-based tokenization like MIDI or REMI, such a tokenization is not suited for
harmonic analysis. A single event, such as a single note, can span over multiple chord
changes, so that such event must be labeled differently through time. Therefore,
we chose to use the representation of AugmentedNet (Nápoles López, 2022, §5.1.4)
based on regular time slices quantized at the thirty-second note. This representation
includes three features:
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• Chromagram. The chroma information is represented as a slice of dimension
19, with 12 dimensions for the pitch class and 7 for the note letter (C, D, . . . , B).
The note letter corresponds to the pitch spelling to disambiguate enharmonics.
In particular, the pitch class and note letter parts can be multi-hot when
simultaneous notes occur.

• Lowest sounding note. The encoding of the lowest sounding note relies on the
same representation as the chromagram, but by definition, the pitch class and
note letter parts are both one-hot vectors.

• Measure and note onsets. The onsets are split into two parts: two 7-dimensional
vectors, one for the onset of measures and one for the onsets of notes. One
of the dimension represents an onset (of a note, or a measure), and the six
other dimensions represent the time elapsed since the onset, measured in note
durations (from ¯ to ˇ “* ).

These three features are then embedded independently and concatenated to give the
embedding of the time-slice-based token given as input to the Transformer encoders.
Using this representation, the chosen sequence length of 512 tokens represents a
16-bar long music in 4
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Figure 7.2: Model architecture for roman numeral analysis based on Transformer encoders,
trained as an end-to-end model. “Bass note”, “Chromagram” and “Note onsets” are multi-hot
vectors, as presented in Nápoles López (2022, §5.1.4).

Architecture – The architecture of our model is based on a stack of Transformer
encoders, following the BERT architecture. The model is followed by a classification
module for the multi-classification task. We keep 14 sub-tasks as represented in
Figure 7.2. Our model for harmonic analysis is a stack of 12 layers of encoders, each
one being composed of 12 attention heads (i.e. 144 heads in total) and processes
512-long sequences, following the architecture of the original BERT model (Devlin
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et al., 2019). Its implementation is based on the the HuggingFace library’s (Wolf
et al., 2020) BERT model from which the embedding layer specific to text is removed.

Training – We use the dataset and train/valid/test splits from (Nápoles López, 2022)
which compiles multiple datasets with roman numeral annotations. From a musical
viewpoint, it spans from early works such as Bach chorales and Well-Tampered
Clavier (Gotham et al., 2019) to early romantic pieces with Schubert lieders (Gotham
and Jonas, 2022). Regarding instrumentations, it is mostly composed of piano solo
(notably Beethoven and Mozart piano sonatas) but is limited to at most four voices
with string quartets (Haydn string quartets) or chorales. It is composed of 596
pieces for a total of 2.4M tokens in the full dataset. We perform data augmentation
by transposing each piece in multiple keys, resulting in 28.3M tokens. Too short
sequences are padded with a special token and an attention mask is applied on these
<PAD> tokens.

Following Liebel and Körner (2018), we implement a multi-task loss which is
defined as a weighted sum of individual classification losses from each task. These
weights associated with the loss are learned simultaneously with the model training.
For the following model explainability experiments, we used the end-to-end model
as justified in Section 7.2.3. We further explore a pre-trained model in Section 7.4.3.

Performances – A comparison between the performance of multiple multi-task
models for functional harmonic analysis is presented in Table 7.1. Comparisons with
previous models (Chen and Su, 2018; Micchi et al., 2020; Chen and Su, 2021) are
not shown, as these models were evaluated on different test sets. In particular, as
depicted by (Chen and Su, 2018), our experiments confirm that a multi-task learning
framework results in better performances than mono-task models in the context of a
Transformer-based model.

Our model outperforms those of previous studies at the time of this work (i.e. with-
out RNBert (Sailor, 2024)). It does so however by stacking 12 layers of 12 heads
Transformers, which is about 900 times larger than AugmentedNet which is based
on a convolutional network. Therefore, we also evaluate a Transformer-based model
composed of 3 layers of 3 attention heads which has a similar number of parameters
as ChordGNN in order to compare performances between the two types of architec-
tures. Nevertheless, the focus of our current study is not on model lightness versus
performance balance but on explainability for which this high performing model
is well suited. The experiments described in the following sections use our larger
model, which seems better suited to analyze the behavior of attention mechanism.

7.2.3 Comparing hidden states from pre-trained and end-to-end
models for RNA

We first aim to assess whether the decision-making process for a functional harmony
label is distributed across all layers of the model or primarily concentrated in the
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Model Key
(38)

Degree
(22)

Quality
(11)

Inversion
(4)

Root
(35)

Avg.∗ # params

AugmentedNet v1.9.1
(Nápoles López, 2022)

(11 tasks) 82.2 67.0 79.7 78.8 83.0 – 105k

ChordGNN
(Karystinaios and Widmer, 2023)

(10 tasks) 81.3 71.4 78.4 80.3 84.9 – 5.88M

RNBert
(Sailor, 2024)

(8 tasks) 82.5 85.9 86.5 87.2 – – 109M

Our model (mono-task) (14 tasks) 79.5 81.7 90.0 89.7 92.0 87.5 92M†

Our model (multi-task) (light) (14 tasks) 77.4 73.5 86.1 87.2 89.2 83.3 5.08M
Our model (multi-task) (14 tasks) 81.7 84.3 90.9 90.3 92.8 88.6 94.9M

Table 7.1: Accuracies of multi-objective RNA models on 5 sub-tasks and averaged over all
sub-tasks. For each sub-task, we indicate the number of classes corresponding to the sub-task.
The models are evaluated on an identical test set (Nápoles López et al., 2021). Performances
from comparative models are extracted from the original papers. (∗) We report the average
of the accuracies on all the tasks performed by the model. (†) The indicated size concerns
one model without its classification head specific to the task. These classification heads are
composed of about 200k parameters depending on the task.

final ones. This will provide insight into which parts of the model likely to be
relevant for further explainability analysis. For this purpose, we implement logit
lens of RNBert (pre-trained model) and our end-to-end model.

Logit lens (nostalgebraist, 2020) is a method aiming at examining the intermediate
activations of hidden layers of a model by translating them into the output vocabulary
using the model’s output layer as translator. Mathematically, for hidden states ℎ𝑖 ∈ R𝑑
resulting from a layer 𝑖 and a vocabulary of size 𝑣, we plug the final layer𝑊out ∈ R𝑣×𝑑

in order to get logits as if they were computed at this early stage of the model.

LogitLens(ℎ𝑖) = 𝑊𝑜𝑢𝑡 · ℎ𝑖 ∈ R𝑣

This method can be refined, for example with TunedLens (Belrose et al., 2023),
but we chose to rely on LogitLens as an initial baseline.

Figure 7.3 shows the logit values LogitLens(ℎ𝑖) of the predicted labels that would
have been obtained for a given sequence if the lens had been applied at each layer
𝑖, for two different models: our end-to-end model (7.3a) and the pre-trained +
fine-tuned RNBert (7.3b). For comparison, the logit values are normalized by the
maximum logit value.

While no formal quantitative analysis have been performed yet regarding the
use of LogitLens, qualitative results tend to show that only the three last layers of
RNBert reflect the final label, both in terms of predicted class and logit value. Indeed,
these three layers are the fine-tuned layers, while the other layers of MusicBERT
were frozen (Sailor, 2024). In contrast, our end-to-end model suggests that the
prediction is more evenly distributed across all layers. Therefore, although the
following analyses presented in Sections 7.3 and 7.4 could have been conducted on
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(a) Average logit of the predicted class at each
layer of our end-to-end model.
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(b) Average logit of the predicted class at each
layer of RNBert.

Figure 7.3: Application of logit lens on RNBert and our end-to-end model for the sub-task of
local key labeling for a piece. The color scale indicates the logit value when the lens is placed
at each layer. On average, the decision-making process is more distributed across the layers
for the end-to-end model, while only the three fine-tuned layers of RNBert are impacted by
the decision.

the last three layers of RNBert, we choose to focus on our end-to-end model and
consider all the layers.

7.3 Analyzing attention behavior

The model presented in the previous section is based on Transformers (Vaswani
et al., 2017) which rely on an attention mechanism (Bahdanau et al., 2015). This
mechanism computes new representations of a sequence 𝑋 of size 𝑛 by repeatedly
passing it along the layers of the deep architecture. As described in Section 5.3, the
self-attention mechanism is defined by a scaled dot-product (Equation (5.1)):

Attention(𝑄, 𝐾,𝑉) = Softmax

(
𝑄𝐾𝑇√
𝑑𝐾

)
︸                ︷︷                ︸

Attention matrix ∈ R𝑛×𝑛

× 𝑉

with a query 𝑄 = 𝑋𝑊𝑄, a key 𝐾 = 𝑋𝑊𝐾 and a value 𝑉 = 𝑋𝑊𝑉 which are involved
in defining an attention matrix. This square matrix represents the contribution of
each element of the sequence as represented by the previous hidden state to compute
the next hidden state. In other words, a line of this matrix can be interpreted as
the attention given from a token to all the tokens of the sequence. A column can be
interpreted as the attention received by a token from all the tokens of the sequence.
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In practice, in contrast with NLP, music sequences are much longer than text
sentences (Huang et al., 2019), resulting in attention matrices with lower values per
token. Therefore, for our sequences of size 𝑛 = 512, we reduce each 512×512 attention
matrices into 64×64 matrices by applying a sum-pooling with a kernel of size 8. This
process has a musical interpretation: instead of considering the attention received
by a thirty-second note, we now consider the attention received by a quarter note
time interval. We consider that such time scale is adequate for a task of harmonic
analysis. In the following, we will consider attention matrices as pooled matrices
derived from the original attention matrices.

When performing functional harmony analysis, one may attend at longer or
shorter range to annotate a chord. For example, identifying the local key may need
to look at further elements (e.g. key signature, accidentals on a potential leading
tone, . . . ) while labeling the inversion of a chord might only involve the chord itself.
Therefore, while multiple features can be obtained from the attention matrix, we
focus specifically on the relation between functional harmony and the attention span.

7.3.1 Attention span

−50 0 50
0

500

1000

1500

Token distance
(in ˇ “)

C
ou

nt

Layer 0 ; Head 7

−50 0 50
0

500

1000

1500

Token distance
(in ˇ “)

C
ou

nt

Layer 2 ; Head 9

−50 0 50
0

5k

10k

15k

20k

Token distance
(in ˇ “)

C
ou

nt

Layer 11 ; Head 3

Figure 7.4: Attention spans grouped by length. They represent the distribution of relative
distances between tokens for which the attention value is important. The line at mid-height
represents the positive / negative width of the attention span.

We introduce a statistic designed to assess the attention span exhibited by the
attention matrix of an attention head. Let 𝐴(𝑠) = (𝑎𝑖 𝑗 (𝑠)) be the attention matrix
computed from a given attention head 𝐻 for sequence 𝑠. Let 𝜃 be a given threshold.
We will consider that token 𝑖 pays attention to token 𝑗 if 𝑎𝑖 𝑗 is above 𝜃. In which case,
we will consider that the attention span of a token 𝑖 is at least of 𝑖 − 𝑗 tokens ahead or
back in the sequence (depending on the sign).
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aspan(𝑎𝑖 𝑗 ) =
{
𝑖 − 𝑗 if 𝑎𝑖 𝑗 ≥ 𝜃
0 otherwise

At the level of the whole attention matrix computed by an attention head, we can
define the attention span of an attention head as the distribution of aspan(𝑎𝑖 𝑗 (𝑠))
values. More intuitively, this represents the distribution of signed distances between
pairs of tokens where the attention value is important1. Examples of such distribution
are given in Figure 7.4. We can quantitatively characterize an attention span by
considering the width of the distribution at mid height, a metric we refer to as
attention span width. In particular, this width can be split into a negative (resp.
positive) part, representing tokens attending to past (resp. future) tokens.
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Figure 7.5: Average attention span width by layer. Attention spans represented by plain
(resp. dashed) lines are extracted from the trained (resp. untrained) model. The attention
towards future is more prominent than attention towards past.

Figure 7.5 shows the average attention span width by layer, with a distinction
between future-oriented and past-oriented attentions (i.e. distinguishing positive
and negative values of distances between tokens), for a trained and random model.

Attention span width – The average attention span width gets narrower across
the layers of Transformer encoders. In comparison, an untrained model exhibits
attention spans which remain constant across the layers. In other words, the hidden
states from deeper layers of the model only need to attend to close hidden states in
order to get information about much larger parts of the sequence. This shows that
deeper layers manage to capture and model longer parts of the sequence within a
few hidden states.

Attention towards past and future – We observe that the attention towards future
is more prominent than attention towards past in the first layers. This phenomenon

1In practice, we set 𝜃 = 0.8, which is 10% of the maximum attention value on the full dataset. This
value is a balance between a too strict and too weak selection of the attention values.
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Figure 7.6: Attention spans grouped by length from selected heads impacted by a low (top)
vs. high (bottom) harmonic diversity.

can be related to the manner functional harmony creates expectations in Western
tonal music by building tension and release (Lerdahl and Jackendoff, 1996). Indeed,
when composing music, a focus is often directed towards a final harmonic resolution
in order to write a coherent harmonic discourse (Randles and Sullivan, 2013).

7.3.2 Attention span & harmonic diversity

Following the framework of an explainability study presented in Section 7.1, we
consider harmonic diversity as a discriminative musical characteristic and we study
the impact on the attention span. We define the harmonic diversity of a sequence
𝐿 = [ℓ1, . . . , ℓ𝑇 ] the cardinality of the set of unique chord labels in this sequence:

HarmDiv(𝐿) =
��{ℓ𝑖�� 1 ≤ 𝑖 ≤ 𝑇}��

Each sequence is thus characterized by a harmonic diversity value and we compare
the average attention spans of the 50 most against the 50 least harmonically diverse
sequences. We then compute the distribution of attention spans on these two types
of sequences.

Figure 7.7 represents the average attention span width towards past and future,
in the case of low and high harmonic diverse sequences. Sequences with higher
harmonic diversity lead to larger attention span towards future and a shorter span
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Figure 7.7: Average attention span width by layer, for low and high harmonic diversity.
Higher harmonic diversity tends to shift the attention span towards the future. Attention
spans from low (resp. high) harmonically diverse are represented in light / dashed (resp.
plain) lines.

towards past than low harmonically diverse sequences. Examples of heads for which
this phenomenon is pronounced are given in Figure 7.6. This shift towards future
at the expense of the past can translate into a larger span towards future, or a
reduction of the attention towards the past. Multiple musical characteristics may be
considered to interpret this phenomenon. For instance, such high harmonic diversity
may indicate a modulating transition (Schachter, 1987), leading to an attention
mechanism more directed towards the arrival key of the modulation.

These observations regarding attention span are preliminary and lack of quantita-
tive evaluation. In addition, considering raw attention values as an interpretable tool
can however be sometimes debated (Jain and Wallace, 2019; Wiegreffe and Pinter,
2019) and may lacks of faithfulness: it may not represent the internal workings
and causal mechanisms of the model but instead provide plausible explanations for
humans (Jacovi and Goldberg, 2020; Lyu et al., 2024). However, by introducing this
new concept of attention span, we believe that further investigations could offer a
deeper understanding of attention mechanism behaviors.

7.4 Understanding attention heads’ relevance

Cognitive science studies have shown that specific regions of the brain are more
“specialized” for particular tasks or stimuli, such as the auditory cortex in the tempo-
ral lobe for auditory stimulus processing or prefrontal cortex for decision-making
tasks (Ward, 2019). As an analogy, functional harmony analysis is typically modeled
as a multi-task framework. Therefore, when performed by an automatic analysis
model, particular regions of the model – typically attention heads in the context of
Transformer-based models – may possibly focus on different aspects of the harmony.
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We explore the behavior of a method called Layer-wise Relevance Propagation
(LRP) on our model. This technique is used to measure how much each artificial
neuron contributes to the model’s final prediction, as explained in more detail in
Section 7.4.1. While this analysis can be later extended to a multi-task setting, we
begin by analyzing the relevance of attention heads in a model trained specifically
for local key detection (Section 7.4.2). We then attempt to explore whether similar
tonal information can also be detected in a model that has only been pre-trained on
a generic task, namely masked language modeling (Section 7.4.3).

7.4.1 Layer-wise relevance propagation

Layer-wise Relevance Propagation (LRP) (Bach et al., 2015) is a technique that traces
the model’s prediction back through its layers to determine how much each input
element contributed to the final output. This is done by iteratively distributing
the output logit’s back to the input, layer by layer. In other words, LRP aims at
highlighting the contribution of each a neuron of the inner layers – or of each input’s
component – to the final prediction.

<|begin_of_text|> NASA’s Artemis program aims to return humans to the Moon
by 2026, with the Artemis II mission to orbit around the moon. The Artemis III
mission explores further goals by landing a spacecraft near the lunar south pole.
They will be the first humans to walk on the moon since the Apollo missions What
is the purpose of Artemis II? Its goal is to

Figure 7.8: Application of LRP in NLP using AttnLRP (Achtibat et al., 2024). The model is
Llama-3.2 and LRP is back-propagated from the last token <to>. Words highlighted in red
(resp. blue) are the most (resp. least) relevant to predict the next token – which is the task on
which the model has been trained.

This method is typically applied in image processing to identify which pixels of
an image contribute most to its classification into a specific category (Figure 7.11). In
NLP, LRP have been first used to highlight which words are relevant for a prediction
from a convolutional neural network (Arras et al., 2016) as illustrated in Figure 7.8.
Later applied to Transformers, Voita et al. (2019) perform LRP to highlight not
only the relevance of the input, but the relevance of the attention heads. This head
attention relevance is defined as the sum of the relevances of its neurons. They
observe that some attention heads are more relevant in this task, and some focus on
specific types of words. Achtibat et al. (2024) then proposes AttLRP, an extension
of LRP for attention layers which ensures faithfulness. In the following, we use the
implementation of AttnLRP (Achtibat et al., 2024) with the lxt library2.

LRP is based on the idea that the value of the logit of the final prediction can be
redistributed backward through the network to estimate the contribution of each
neuron (Figure 7.9). The process involves two steps: a standard forward pass to

2https://github.com/rachtibat/LRP-eXplains-Transformers

https://github.com/rachtibat/LRP-eXplains-Transformers
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Figure 7.9: Qualitative intuition behind LRP. Given the logit of the final output, this value
is back-propagated iteratively to the inner neurons to evaluate the extent to which each
individual neuron contributed to the final prediction. Reproduced from (Montavon et al.,
2019).

compute the output logit and the activations of each neurons of the network, followed
by a backward pass (distinct from gradient back-propagation) that assigns relevance
scores to individual neurons throughout the network.

More formally, it is based on propagation rules (Montavon et al., 2019). To begin
with, let’s first consider a simple feed-forward fully connected neural network with
𝐿 layers with a single output. We focus on a sub-part of the network at layer ℓ < 𝐿 as
represented in Figure 7.10. In the following, we call a neuron the combination of the
aggregation step and the activation function 𝜎. We note the output of the 𝑖th neuron
of the layer ℓ computed during the forward pass as:

𝑎ℓ𝑖 = 𝜎

(∑︁
𝑗

𝑎ℓ−1𝑗 𝜔(ℓ−1,ℓ)𝑗𝑖

)
where 𝜔(ℓ−1,ℓ)𝑗𝑖 is the weight between the neuron 𝑗 of the layer ℓ − 1 and the neuron 𝑖
of the layer ℓ.

Let 𝑅ℓ𝑖 denote the relevance of the 𝑖th neuron of the layer ℓ. It is computed in a
backward pass once the forward pass is done. The LRP-0 rule (Montavon et al., 2019)
defines the value of 𝑅ℓ𝑖 by recurrence following the expression:

𝑅ℓ𝑖 =
∑︁
𝑘

𝑎ℓ𝑖𝜔
(ℓ,ℓ+1)
𝑖𝑘∑

𝑗
𝑎ℓ𝑗𝜔

(ℓ,ℓ+1)
𝑗 𝑘

𝑅ℓ+1𝑘 (7.1)

where the base case is3

𝑅𝐿 = 𝑎𝐿1 (7.2)

In essence, a relevance at a particular layer can be interpreted as a weighted sum
of the relevances of the next layer of the network.

3𝑎𝐿1 is typically the logit of the predicted class.
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Figure 7.10: Elements involved in the LRP back-propagation. Equation (7.1) derives 𝑅ℓ𝑖 the
relevance of the neuron in the green box. 𝑎ℓ· are the activations, 𝜔 (ℓ,ℓ+1)· the weights between
neurons of layer ℓ and ℓ + 1, and 𝑅ℓ+1· the already computed relevances when arriving on the
layer ℓ.

In particular, in the case of a multi-output model, note that 𝑅𝐿 does not have to
correspond necessarily to the logit of the predicted class. As illustrated in Figure 7.11,
it can instead be the logit of any class, allowing us to back-propagate and analyze
which components may have contributed to the decision on a given class, even if it
was not the one predicted by the model.

(a) Original image. (b) LRP back-propagation from
the predicted label castle.

(c) LRP back-propagation from
the 7th label street_sign.

Figure 7.11: Pixel relevances obtained via LRP back-propagation for different target labels.
The classification model is a VGG-16 trained on ImageNet-1K. The label predicted by the
model is castle. When ranked by probabilities, the model may have predicted church,
monastery, . . . , street_sign, . . . . We can back-propagate from the logit corresponding to any
class which highlights the relevance of the pixel for this class.

Multiple enhancements such as LRP-𝜖 and LRP-𝛾 rules have been implemented to
reduce noise or to improve the contrast between positive contributions over negative
contributions. LRP can be reformulated using gradient values, and therefore, it
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can be implemented leveraging automatic differentiation librairies (Montavon et al.,
2019)

In the case of case of Transformers, we want to quantify the relevance of a full
attention head, more than single neurons. Therefore, we consider the relevance of
an attention head to be the sum of the relevance of all the neurons of this head.
Therefore, in the following, given a Transformer-based model with 𝑙 layers and ℎ
heads per layer, we call LRP map the vector of size 𝑙 × ℎ (= 12 × 12 = 144, for our
considered model). It represents the relevance of each attention head for a given
prediction. An example of LRP map is represented in Figure 7.12.
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Figure 7.12: Example of an LRP map. Each cell represents the relevance of an attention head
for a prediction. We represent as a 𝑙 × ℎ matrix as an intuitive visualization, but the employed
metrics are standard vector distances.

7.4.2 Attention heads’ relevance and musical tonality

When playing music, musicians may not have the same perception of a certain note
if it is played inside sequences of different tonalities: the information conveyed
by a certain note arguably varies depending on the tonality context in which it is
played. For example, in the context of a choir, singing an F# may be less difficult
when the surrounding key is B major because it represents the dominant of the
scale rather than a key of C major, where it is the tritone of the root. This effect is
even more pronounced when occurring within a piece with modulations, where a
same pitch may be thought differently as it may not play the same role. If the inner
mechanisms of the models are somewhat comparable to the cognitive process of
the musician, one can wonder if different contexts (tonal, rhythmic, etc.), which are
not explicitly encoded as such in the input data, can produce distinct inner states
detectable through LRP maps.

An experimental protocol relying on LRP is developed to prob the inner mecha-
nisms when the model is trained to distinguish tonal contexts. We show that the set
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of relevant attention heads is more similar when they are built from tokens sharing
the same tonality labels, compared to different tonalities. Going further, we also
prob a model trained as a masked language model, in order to evaluate if functional
harmony information is encoded in these inner mechanisms.

7.4.2.1 Hypotheses between LRP maps and local tonalities

In the following, we use these notations:

• Let 𝑋 be a sequence of time-sliced tokens of length 𝑇 .

• Let Φton a Transformer-based model trained only on the task of tonality labeling
composed of 𝑛 layers with ℎ heads per layer.

• Let 𝐿 = ℓ1, . . . , ℓ𝑇 a sequence of labels annotating the tokens 𝑋. These labels
are typically the labels of the ground truth, but could also be those predicted
by Φton. Going further, we also explore cases where these labels relate to other
features such as texture or other functional harmony-related features.

• Let LRP(Φton, 𝑋, ℓ𝑖) ∈ R𝑛·ℎ the LRP map of Φton for the prediction of ℓ𝑖 from the
sequence 𝑋 . (i.e. the relevance of all attention heads of Φton for the prediction
of ℓ𝑖).

• Let 𝑑 (𝑣1, 𝑣2) the euclidean distance between two vectors 𝑣1 and 𝑣2 with the
same size.

We begin by considering intra-sequence hypotheses to assess whether the set
of attention heads that activate for the same tonality is more similar compared to
different tonalities within a same sequence. In particular, the segmentation of the
sequence in terms of tonality labels can be performed at multiple levels of granularity,
including token-wise and bar-wise.

Hypothesis 1a (token-wise) – We want to verify the following hypothesis:

In a sequence, given two tokens of the same label, and two tokens of different
labels, we hypothesize that the activated heads for the pair of tokens with the
same label are more similar than for those the pair of tokens with different labels.

More formally, let
R𝑘 = LRP(Φton, 𝑋, ℓ𝑖)

the map of head relevances computed from ℓ𝑘 through LRP. We want to verify the
following hypothesis.
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Given 𝑖, 𝑗 , 𝑘 such that ℓ𝑖 = ℓ 𝑗 and ℓ𝑖 ≠ ℓ𝑘 , is the following relation true?

𝑑 (R𝑖,R 𝑗 ) < 𝑑 (R𝑖,R𝑘 )

Hypothesis 1b (bar-wise) – We want to verify the following hypothesis:

In a sequence sliced into equal-length one-bar-long window, we hypothesize that
given two bars of the same label, two bars of different labels, the activated heads
for the bars with the same label are more similar than those for the bars with
different labels.

More formally, a sequence of labels 𝐿 can also be partitioned into 𝑁 windows as
𝐿 = 𝑊1, . . . ,𝑊𝑁 such that ∀𝑖, 𝑗 , |𝑊𝑖 | = |𝑊 𝑗 | ≔ 𝜔. In other words, a sequence of labels
can be split into windows containing the same number of tokens 𝜔. In practice we
take 𝜔 to be one-bar long because key changes often occur at the level of bars.

We introduce 𝜏𝑘 associated to a window 𝑊𝑘 such that ∀ℓ, ℓ′ ∈ 𝑊𝑘 , ℓ = ℓ
′ ≔ 𝜏𝑘 . In

other words, it represents the tonality of a bar in which all the labels are identical
(i.e. bar which does not include musical modulations).

Let

R𝑘 = 1

𝜔

∑︁
ℓ 𝑗∈𝑊𝑘

LRP(Φton, 𝑋, ℓ 𝑗 )

the average of maps of head relevances within a window. We want to verify the
following hypothesis.

Given𝑊𝑖,𝑊 𝑗 ,𝑊𝑘 such that 𝜏𝑖 = 𝜏𝑗 and 𝜏𝑖 ≠ 𝜏𝑘 , is the following relation true?

𝑑 (R𝑖,R 𝑗 ) < 𝑑 (R𝑖,R𝑘 )

We then consider an inter-sequence hypothesis which extents the last hypothesis
by considering multiple sequences.

Hypothesis 2b (bar-wise) – We want to verify the following hypothesis:

Given two bars of the same label, and two bars of different labels – which do not
include label changes, but possibly coming from different pieces – we hypothesize
that the activated heads for the pair of bars with the same label are more similar
than those for the pair of bars with different labels.

Let 𝐵𝑎 a bar extracted from the sequence 𝑋𝑎 = 𝐵𝑎,1, . . . , 𝐵𝑎,𝑁 having 𝑁 bars. 𝐵𝑎 of
same label 𝜏𝑎 annotated by 𝐵𝑎 = ℓ1, . . . , ℓ𝑀 where 𝑀 is the number of sub-beats in a
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bar. In other words, ∀𝑖, ℓ𝑖 = 𝜏𝑎 (e.g. with tonality labels, that means that 𝐵𝑎 is in the
key of 𝜏𝑎). We consider

R𝑎 = 1

|𝐵𝑎 |
∑︁
ℓ 𝑗∈𝐵𝑎

LRP(Φton, 𝑋𝑎, ℓ 𝑗 )

We want to verify the following hypothesis.

Given two bars 𝐵𝑎 and 𝐵𝛼 both annotated with the same label 𝜏𝑎 = 𝜏𝛼 , possibly
extracted from two different sequences, and 𝐵𝑏 annotated with the label 𝜏𝑏 ≠ 𝜏𝑎,
is the following relation true?

𝑑 (R𝑎,R𝛼) < 𝑑 (R𝑎,R𝑏)

For all the hypotheses presented above, we aim to evaluate them across the entire
dataset to capture overall behaviors. To do so, for each level considered by the
hypotheses, we want to verify two elements:

(i) The two distributions of pairwise distances between LRP maps for similar vs.
different labels are distinct.

(ii) If so, the average distance between LRP maps resulting from similar labels is
lower than the average distance between LRP maps resulting from different
labels.

For (i), we compute the distribution of pairwise distances when the labels are
identical and the distribution of pairwise distances when the labels are different. We
then compare these two distributions through a Jensen-Shannon Divergence (JSD)
which quantifies the divergence between two distributions 𝑃 and 𝑄 as a symmetrized
version of the Kullback-Leibler divergence, noted as KL(𝑃 ∥ 𝑄):

JSD(𝑃 ∥ 𝑄) = KL(𝑃 ∥ 𝑀) +KL(𝑄 ∥ 𝑀)
2

with 𝑀 =
1

2
(𝑃 +𝑄)

A high JSD would indicate that the distributions are well distinct. For comparison,
we evaluate this value against a case in which the labels are randomly assigned.
To ensure comparability with the true label sequences, the random sequences are
constructed by preserving the same distribution of labels and section lengths, but
assigning labels randomly.

For (ii), we report the average distance between LRP maps in the two cases: 𝑑= is
the average distance between LRP maps when they are labeled identically and 𝑑≠ is
the average distance between LRP maps when they are labeled differently. A high
distance suggests that different attention heads contribute to the labeling of the two
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tokens (sections, sequences or bars), while a low distance indicates that similar heads
are involved.

To ensure comparability across hypotheses, we also consider normalized distances
𝑑norm
= and 𝑑norm

≠ , obtained by centering the raw distance values around the average
over all the dataset and scaling them by the standard deviation.

7.4.2.2 Evaluating the hypotheses between LRP maps and local tonalities

(i) JSD between
same vs. different labels

(ii) Average distance
between LRP maps

True
labels

Random
labels †

Same
label (𝑑=)∗

Different
label (𝑑≠)∗ 𝑑norm

≠ − 𝑑norm
=

1 Hypothesis 1a (token)

2 Local key 0.156 0.027
10.231

-0.463
18.551

0.519
0.982

3 Hypothesis 1b (bar)

4 Local key 0.132 0.009
11.589

-0.240
18.154

0.656
0.896

5 Roman Numeral 0.071 0.005
9.547

-0.518

14.393

0.143
0.661

6 Quality 0.029 0.003
11.247

-0.286

14.290

0.129
0.415

7 Inversion 0.007 0.002
12.681

-0.090

13.904

0.076
0.166

8 Rhythmicity 0.002 0.004
12.752

-0.081

13.685

0.046
0.127

9 Hypothesis 2b (bar)

10 Local key 0.062 7.726e-5
19.148

-0.490
24.065

0.021
0.511

11 (MLM) Hypothesis 1b (intra-sequence, bar-wise)

12 Local key 0.002 0.004
254.105

-0.020
258.002

0.057
0.077

13 (MLM) Hypothesis 2b (inter-sequence, bar-wise)

14 Local key 0.006 3.034e-5
163.047

-0.087
170.511

0.004
0.091

Table 7.2: Jensen-Shannon Divergences and average distances between LRP maps computed
from pairs of same and different labels. The lower the JSD values, the more similar the
distributions. (∗) The indicated sub-values are the normalized distances 𝑑norm

= and 𝑑norm
≠ to

ensure comparability between cases. (†) The random distribution follows the proportion and
section lengths of the true distribution.

We evaluate the hypotheses presented in the previous section using the model
presented in Section 7.2.2 with only the local key classification head. Its performance
is 79.5% accuracy on the task of local key detection (Table 7.1).
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To begin with, we evaluate the intra-sequence hypotheses presented above in
Section 7.4.2.1. The metrics presented above are presented in Table 7.2 (rows 1–10).

Hypothesis 1a (label-wise) – The hypothesis states that two tokens within a sequence
that share the same label exhibit more similar relevant attention heads compared to
tokens labeled with different labels. Here, we focus only on tonality labels.

In order to test the hypothesis, we randomly sample 100 sequences of length
𝑇 = 512. This results in a dataset of 13M pairs of LRP maps4 from which we can
compute pairwise distances. These pairs of LRP maps can be grouped into two
categories: couples of tokens labeled with the same tonality, or different tonalities.

The distribution of these distances is presented in Figure 7.13 and tends to show
that the distributions between same and different labels are distinct. This is notably
confirmed by the JSD between the two distributions (Table 7.2, row 2) which is
lower when the labels are well-assigned in comparison with random labeling, which
confirms (i). Moreover, the average distances between LRP maps tend to validate (ii):
attention heads relevant to the same label are more similar than those involved in
labeling different classes.

0

0,005

0,01

0

0,005

0,01

P
ro
p
or
ti
on

Relation
Same label
Different label

0 10 20 30 40 50 60

Different label

Same label

Distance

Figure 7.13: Hypothesis 1a (label-wise): distribution of distances between label-wise LRP
maps grouped by same tonality vs. different tonality. The average of each distribution is
indicated by red markers and corresponds to the values reported as 𝑑= and 𝑑≠ in Table 7.2.

However, while this property holds on average, we observe in Figure 7.13 that
some couples of tokens labeled with the same tonality exhibit LRP maps with higher
distance than couples of tokens of different tonalities. We want to dive deeper into
understanding this behavior by taking a particular piece as an example (Figure 7.14).

4100 sequences with
(512
2

)
= 130k pairwise distances for each.
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(a) Original modulation from B♭ major to G major.
Model predictions: B♭ ; G.
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(b) Keeping only the B♭ major key signature.
Model predictions: B♭ ; Gm.
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(c) Keeping the full sequence in B♭ major.
Model predictions: B♭.

0 100 200 300 400 500

0

100

200

300

400

500

� �
�

�

�

�

��
�� �

�

��� �����
�� ��

���

����

�� �

�

�

�
�

�

� � ��

�

��

�

�

�

�

�
�
� ��

�
�

�� �� 	 �
�
� �� �


� �� 	
�
�

���� � �
�� �

�



�
�
�

�
�
���

��

(d) Removing F♯ which might indicate the original G major key.
Model predictions: B♭.
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(e) Rewriting the modulation preparation to avoid the original ii-V-I in G major.
Model predictions: B♭.

Figure 7.14: Impact of the musical content on the attention head relevances when approach-
ing a modulation. LRP analysis is performed on multiple modified version of this extract,
with the modifications highlighted in blue. In (c), transposing the modulated part makes
the model only predict one key, but the relevances show that relevant heads still differ near
the initial modulation. This phenomenon only disappear when re-writing the preparation
as shown in (e). The left column represents the token-wise LRP maps with the modulation
located at the middle of the sequence. (Piece: For the beauty of the earth (J. Rutter), bars 57–62)
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We investigate this qualitatively by constructing a series of counterfactual modifi-
cations on a particular piece. The original piece includes a modulation from B♭ to G
major (7.14a), and the distance matrix between LRP maps (7.14a, left5) shows that
the set of attention heads are different when going through the modulation and the
model do predicts this modulation. We want to observe what causes the model to
predict these two keys.

• A first attempt is to change the key signature, by keeping the two flats of the B♭
key (7.14b) and switching all the B and E to B♭ and E♭. Naturally, this leads to a
modulation into G minor instead (because they share the same key signature).

• Going further, we transpose the whole modulated part from G major to B♭
major (7.14c). The model no longer finds a modulation and only predicts a
B♭ major tonality, as expected. However, at about mid-sequence, the set of
attention heads still differs locally from the relevant heads for B♭ (blue lines).
In other words, the internal representations of the model still detects a bit
of modulation at this location, even though the final label remains a single
tonality.

• As a possible explanation for this phenomenon, we turn the F♯ into a F♮ (7.14d)
Indeed, as F♯ was the leading tone of the original new tonality, it might have
prompted the model to trigger a modulation. Though, the phenomenon still
remains (blue lines).

• Instead, re-writing the whole modulation preparation (which is a ii-V-I cadence
preparation) makes the blue lines disappear (7.14e). Therefore, this specific
case study seriously suggests that cadence preparations for modulations are
captured by attention heads relevances.

Hypothesis 1b (bar-wise) – The hypothesis states that two bars within a sequence
that share the same label exhibit more similar relevant attention heads compared to
bars labeled with different labels.

In the same way as the previous hypothesis, as shown in Figure 7.15 and Table 7.2
(row 3–8), the metrics shows that the distributions between same and different
tonalities are more distinct than a random labeling. Moreover, the relevant heads
involved in the classification of bars with two different tonalities are more different
that those classifying a same tonality. This is noticeable result as the aggregation of
labels is performed through equal-size one-bar-long windows, independently from
the position and the length of each contiguous sections of labels.

5The cell (𝑖, 𝑗) of this matrix represents the distance between the LRP maps computed from the 𝑖th

and the 𝑗 th tokens. A blue color represents a low similarity between the LRP maps (i.e. high distance),
and a red color represents a high similarity between the LRP maps (i.e. low distance).
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Figure 7.15: Hypothesis 1b (bar-wise): distribution of distances between bar-wise LRP maps
grouped by same tonality vs. different tonality.

We then further explore whether our model trained only on local key prediction
exhibits internal mechanisms that reflect other low-level features of harmonic analy-
sis. In other words, we reproduce the same evaluation by comparing pairs of sections
based not on their local key labels, but on properties such as chord quality, inversion,
and other descriptors. In particular, we focus on the sub-tasks on “roman numeral”
(which corresponds to the final roman numeral label for a chord), “chord quality”
and “chord inversion”. We added a textural attribute, namely a “rhythmicity” feature
which counts the number of onsets in a bar6 because musical texture and harmony
are often considered as two orthogonal descriptions of music (Wang et al., 2020b).
These comparisons are shown in Table 7.2 (rows 5–8).

Interestingly, for the “roman numeral” and “chord quality” sub-tasks (rows 5–
6), their distributions are more distinct than a random distribution. In contrast,
the “inversion” and “rhythmicity” (rows 7–8) show similar or worse divergences
compared to a random distribution. From a musical viewpoint, this suggests that a
model trained on key detection also includes information about lower-level harmonic
features in its inner mechanisms. Going further, these sub-tasks can be ordered by
presence in this mechanism: “inversion” and “rhythmicity” are the least present, and
are also typically the musical features that may be the least relevant to determine a
tonality.

In this hypothesis, we have not focused on the case of bars having a label change
as defined in Section 7.4.2.1. Further study can dive into this case. For example, by
grouping bars into types of modulation, it would be insightful to evaluate whether
bars involving tonic-dominant or tonic-relative modulations exhibit distance values
closer to the “same label” case, in contrast to bars with other types of modulations.

In summary, our experiments to test the intra-sequence hypotheses suggest that the
set of attention heads that are relevant to classify labels in the same tonality is more
similar compared to different tonalities within a same sequence. This phenomenon is
observed on average across all three segmentation levels of the sequence: label-wise,
section-wise, and bar-wise.

We then extend the evaluation of this hypothesis to the inter-sequence context. We

6The rhythmicity attribute is formally defined in Section 8.1.1.
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follow the same framework as the one presented for the intra-sequence hypotheses.
The same metrics defined above are reported in Table 7.2 (rows 9–10).

Hypothesis 2b (bar-wise) – The hypothesis states that two bars – possibly from
two different sequences – that share the same label exhibit more similar relevant
attention heads compared to bars labeled with different labels. Here, we also focus
on the tonality labels.
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Figure 7.16: Hypothesis 2b (bar-wise): dimensionality reduction of bar-wise LRP maps
through t-SNE. The sample represented in the figure is composed of 5k points.

For this hypothesis, we randomly sample a subset of 20k bars from all the test set
due to computational limits. First, as an initial qualitative visualization (Figure 7.16),
we perform a dimensionality reduction of sequence-level LRP maps, grouping them
by tonality. Clusters are computed on this 2-dimension projection through a 24-
cluster agglomerative clustering. Qualitatively, sequences with the same tonality
seem to exhibit LRP maps that gather into clusters in this low-dimensions space. How-
ever, no musically meaningful high-level structure (e.g. Tonnetz, circle of fifths. . . )
can be directly derived from this projection.

We then compute the pairwise distances between bar-wise LRP maps (Figure 7.17).
The JSD between the distributions of distances between LRP maps annotated with
the same vs. different labels confirms that these distributions remain distinguishable
(Table 7.2, row 10). In terms of average distances, attention heads also tend to exhibit
greater similarity when involved in the labeling of the same class, compared to when
they are labeled with different ones.

However, when comparing the intra-sequence (row 4) and inter-sequence cases (row
10) with the same level of segmentation (i.e. at a bar-level), the difference 𝑑norm

≠ −𝑑norm
=

is more important in the intra-sequence case. In other words, the relevance attention
heads is influenced not only by the tonality but also by other differences between
sequences. From a musical perspective, the intra-sequence framework implicitly
assumes a degree of consistency in musical texture, meaning that tonality becomes
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Figure 7.17: Hypothesis 2b (bar-wise): distribution of distances between bar-wise LRP maps
grouped by same tonality vs. different tonality. These bars can be extract from different
sequences.

the main varying factor. Consequently, variations in attention head relevance are
primarily driven by changes in tonality. In contrast, across different sequences,
variations in texture introduce additional differences. Although the model is only
trained on local key detection, further study may explore whether it does capture
additional musical attributes – such as textural differences between sequences –
which, in turn, may mitigate the impact of tonality alone on attention head relevance.

In summary, attention head relevances remain more similar when processing same
tonalities compared to different tonalities, even across different sequences. Though,
in comparison with the intra-sequence framework, this shows that the model may
capture additional feature, beyond the tonality.

7.4.3 Is tonality learnt during pre-training? Applying LRP to a
MLM

In NLP, grammatical relations can be found by probing the attention mechanism of
a pre-trained-only model such as BERT (Clark et al., 2019). As many studies often
compare musical harmony to grammar, we attempt to probe a pre-trained model
using the tools presented above based on LRP maps.

Pre-training for multi-hot time-slice representation – Following the architecture
presented in Figure 7.2, we pre-trained this model as a Masked Language Model
(MLM) following the pre-training of BERT (Devlin et al., 2019) models. MLM is a
training objective where some tokens in a text sequence are replaced with a special
mask token or randomly swapped with another token of the vocabulary, and the
model is trained to predict the original tokens from the surrounding context. This
allows the model to learn bidirectional contextual representations of language.

While the pre-training strategy of BERT relies on a cross entropy loss to predict
the masked token from a pre-defined vocabulary, such an approach is not directly
applicable to our multi-hot representation. To this end, we mask a whole time-slice
(i.e. the three multi-hot vectors for the three components of the used representation
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(𝑥chroma, 𝑥bass, 𝑥onset) which represent a slice). Therefore, the model’s output are
three multi-hot vectors 𝑥chroma ∈ R19 , 𝑥bass ∈ R19 and 𝑥onset ∈ R14 which are passed
through a Softmax(·) function so that each 𝑥· is bounded in [0, 1]. The loss used for
the reconstruction of the masked token is a sum of 52 binary cross-entropies (i.e. one
for each element of the multi-hot vectors).

The implementation of the pre-training process is an adaptation of the pre-
training implementation of MidiBERT-Piano (Chou et al., 2024). We adopt the same
pre-training datasets as the original model which include Pop1K7 (Hsiao et al., 2021)
and POP909 (Wang et al., 2020a), both consisting of piano covers of pop songs,
Pianist8 (Chou et al., 2024), composed of piano performances by pop, contemporary
and jazz pianists, and EMOPIA (Hung et al., 2021), composed of piano covers of
Japanese and Korean anime and Western pop songs. To mitigate the predominance
of pop-style music in the initial training data of MidiBERT-Piano, we additionally
include ATEPP (Zhang et al., 2022), which features classical and romantic piano
works. Given these considered datasets, we assume that our framework does stay
within the realm of tonal music. The final pre-training dataset is composed of 14.5k
pieces representing 10.4M tokens using our representation.

Performance of the pre-training – We evaluate the pre-training process quan-
titatively. To this end, we consider the reconstruction performance as being the
component-wise accuracies between the ground truth multi-hot vector representing
one component and its reconstruction by the model.

More precisely, for each component 𝑐 ∈ {chroma, bass, onset}, we define 𝑥𝑐 as
being a binarized version of 𝑥𝑐 where:

𝑥𝑐𝑖 =

{
1 if 𝑥𝑐𝑖 > 0.5

0 otherwise

Therefore, for each component 𝑐 represent by a multi-hot vector of dimension 𝑁𝑐,
we report the accuracy:

Accuracyc =
1

𝑁𝑐

𝑁𝑐∑︁
𝑖=1

1(𝑥𝑐𝑖 = 𝑥𝑐𝑖 )

We compare a pre-trained model with a randomly-initialized model, as reported
in Table 7.3. The pre-training proves beneficial, as the reconstruction accuracies are
better for the pre-trained model compared to the random model across all compo-
nents. However, the chromagram component shows surprisingly similar reconstruc-
tion accuracies between the two models. Therefore, assuming that this pre-training
may have contributed to building potentially meaningful internal representations,
we aim to investigate whether harmonic information can be detected within them.
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Model Chromagram
(19 dim.)

Bass note
(19 dim.)

Onset
(14 dim.)

Average

Pre-trained MLM 0.62 0.80 0.66 0.70
Random model 0.61 0.56 0.39 0.53

Table 7.3: Performance of the masked language model pre-training. The values indicate
the reconstruction accuracies between the ground truth multi-hot vectors and the model’s
reconstruction of these vectors from a masked token.

LRP for multi-hot time-slice representation – The application of LRP is not direct
because it must be back-propagated from a single logit value from the output. In our
case, the output are three multi-hot vectors. To this end, instead of back-propagating
LRP from each single value of these multi-hot vectors, we sum the values of the
multi-hot vectors and back-propagate LRP from this aggregated sum. We show that
these two processes are equivalent in Appendix C.

Hypotheses & results – In the following, we evaluate hypotheses involving bar-wise
segmentation for intra- and inter-sequence cases (i.e. 1b and 2b). More formally, we
consider the same formulations of Section 7.4.2.1 only by switching Φton – which
was only trained on the task of local key detection – into ΦMLM, a pre-trained model
which processes the same token representation, trained on a task of masked language
modeling. While the other levels of segmentation would have also been judicious to
be studied for an exhaustive analysis, we only focus on the bar-wise segmentation
as our previous experiments with Φton show differences between intra- and inter-
sequence cases.

For the hypothesis 1b (bar-wise), we present the distribution of distances be-
tween same vs. different labels in Figure 7.18 and the quantitative metrics in Table 7.2
(row 12). In contrast to the model specifically trained on local key detection (Fig-
ure 7.15), the distributions of LRP maps labeled with the same and different tonalities
show only marginal differences compared to the random labeling scenario. This
is also confirmed by the difference in average distances between the two distribu-
tions which also remains marginal (12 times less important when comparing the
normalized distances – rows 4 and 12).

0 100 200 300 400 500 600

Different label

Same label

Distance

Figure 7.18: Hypothesis 1b MLM (bar-wise): distribution of distances between bar-wise LRP
maps grouped by same tonality vs. different tonality.
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For the hypothesis 2b (bar-wise), we report the metrics in Table 7.2 (row 14) and
we show the distribution of distances between LRP maps in Figure 7.20. We first
perform a t-SNE on the LRP maps as presented in Figure 7.19. Similarly, in contrast
with Figure 7.16, the dimensionality reduction does not show clear clusters in terms
of tonality. However, points from the same tonality appear to not be spread at
random in the dimensionality reduction. This is supported by the JSD value between
the random sequence labeling vs. the true labels. Even though the raw value for the
true labels is not as important as for the model trained on local key, their is still a
notable difference with the random labeling. Similarly as the intra-sequence case,
the difference between the distribution distances between of LRP maps annotated
with the same label vs. different label is not as important than in the case involving
the model trained on local key detection (row 10).
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Figure 7.19: Hypothesis 2b MLM (bar-wise): dimensionality reduction of sequence-wise LRP
maps through t-SNE. The sample represented in the figure is composed of 5k points.
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Different label
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Figure 7.20: Hypothesis 2b MLM (bar-wise): distribution of distances between bar-wise LRP
maps grouped by same tonality vs. different tonality. These bars can be extract from different
sequences.

Discussion – Going further, these preliminary experiments on the presence or
absence of tonality information within the inner mechanisms of a pre-trained-only
model can raise questions about the relevance of considering harmony as a form of
“musical grammar” inherently captured through a generic pre-training task. Using
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attention head relevances as a probing method, our experiments do not give a clear
answer regarding the ability for the model to learn harmonic concept through masked
language modeling with our model and the considered pre-training dataset.

This result can be nuanced or questioned from two perspectives. First, we use
local key as a probing feature, which might already be too high-level for the model to
capture. In contrast, lower-level features – such as chord quality or scale degree – may
be more likely to be internally represented. Moreover, we use the head relevances
as a probing method. Alternative strategies, such as embedding analysis, may offer
clearer insights into latent harmonic phenomena that the MLM could have implicitly
encoded.
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This chapter is based on a work published at the conference IJCAI 2025
(International Joint Conference on Artificial Intelligence) for the Special Track on
AI, Arts and Creativity (Le and Yang, 2025). This work was carried out during a
3-month international research visit at the AI & Music Lab of National Taiwan
University in Spring 2024.

As described in Chapter 3, several types of musical tasks can be addressed with
NLP tools. Although NLP and MIR share common tasks, certain musical tasks cannot
be transposed to textual data, with re-orchestration being a notable example. In this
chapter, we propose an adaptation of NLP tools to address this task in the context
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of Western tonal music, framing it as a specific case of multi-track symbolic music
generation.
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(a) Variation orchestrated with a string quartet, with a “sparse” texture (bar 1).
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(b) Variation orchestrated with a full orchestra, with a “dense” texture (bar 107).

Figure 8.1: Example of re-orchestration in Haydn’s Symphony No. 94 (Mvnt. 2). Between
these two extracts, the melody highlighted in yellow is broadly kept as well as the harmony
(red labels) but the musical texture and the instrumentation are altered.

Re-orchestration – This task refers to the musical arrangement of an existing music
piece for a different set of instruments (Cacavas, 1975). In the context of popular mu-
sic, this notion is often associated with “song covers”. A key similarity between the
original piece and a successful re-orchestration often lies in maintaining melodic fi-
delity. In Western music, music is often written under a homophonic texture (Young
and Roens, 2022, p. 47). This musical texture is defined as a primary melody is
supported by an accompanying background. In the composition process, effective
orchestration requires knowledge of writing for various instruments by combin-
ing their timbres, while being restricted by their physical limitations (Adler and
Hesterman, 1989).

Going further, re-orchestration extends beyond simply reassigning parts of the
original piece to instruments in a new ensemble. It often involves altering the
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overall musical texture of the piece to suit artistic goals or ensemble constraints.
Musical texture characterizes how musical streams are organized and describes their
content (Huron, 1989). An orchestral score can be described by global characteristics,
such as instrument groupings or part diversity, and part-specific attributes such as
rhythmicity or repetitiveness (Le et al., 2022). Re-orchestrations commonly appear
in works written in the form of variations, as illustrated in Figure 8.1.

Model
Multi-
track

Texture controllability Melodic
fidelity

Instrument choice Open-
source1

Track-level Bar-level Full ensemble Melody

MuseMorphose
(Wu and Yang, 2023b) ✗ ✗ ✓ ✗ ✗ ✗ ✓

MuseBarControl
(Shu et al., 2024) ✗ ✗ ✓ ✗ ✗ ✗ ✗

Figaro
(von Rütte et al., 2023) ✓ ✓ ✓ ✗ ✗ ✗ ✓

PopMAG
(Ren et al., 2020) ✓ ✗ ✗

✓
(ind. track)∗ fixed (6)† ✗ ✗

GetMUSIC
(Lv et al., 2023) ✓ ✗ ✗

✓
(ind. track)∗ fixed (5)† ✗ ✗

BandControlNet
(Luo et al., 2024) ✓ ✓ ✓

✓
(ind. track)∗ fixed (6)† ✗ ✗

AccoMontage-band
(Zhao et al., 2024b) ✓ ✗ implicit∗∗ ✓

(ind. track)∗ implicit∗∗ ✗ ✓

Meteor
(presented in this chapter) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 8.1: Models related to the style transfer sub-tasks performed by Meteor, our model
presented in this chapter. (1) We consider models to be open-source when both the code and
trained models are publicly available. (∗) The melody is added a posteriori as an independent
track, in contrast with Meteor where the melodic instrument is chosen among the chosen
instrumentation. (∗∗) This model mimics the texture and the instrumentation of an already
existing source: the choices are not explicit. (†) These models only handle a fixed number of
instrument types (e.g. 5 or 6).

Re-orchestration as a generative task – In the field of symbolic music genera-
tion, re-orchestration can be considered as a style transfer task (Section 3.2.2), for
which a model is designed to replicate a reference piece while altering high-level
musical attributes. In particular, re-orchestration can be depicted under two mu-
sic style transfer sub-tasks: instrumental style transfer, where the instrumentation
of the reference piece is altered and texture-based style transfer, where high-level
musical features from the reference are adjusted to generate a new piece. Existing
style transfer systems among those presented in Chapter 5 may be inadequate to
specifically perform a re-orchestration task (Table 8.1). They often focus on band
arrangements (Zhao et al., 2024b; Luo et al., 2024) which restricts the instrument
choices to a fixed and small ensemble and does not allow fine-grained selection
of instrumentation. Beyond the instrumentation choice, re-orchestration implies
textural controls, for which style transfer systems have also been implemented. This
control is often performed at a piece-level (Lu et al., 2023) or bar-level (Wu and Yang,
2023b). For orchestral music – more generally, multi-track music – such control can
also occur at the track level.
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Reference Piano Orchestra+ Orchestra−

Figure 8.2: Meteor’s re-orchestration task. The model can re-orchestrate a reference for
multiple instrumentations (e.g. solo piano, or orchestra) with texture controls, with more
(orchestra+) or less (orchestra−) “polyphonicity” and “rhythmic intensity” (Section 8.1.1).
The models ensures melodic fidelity (red highlight) with fine-grained controls (melodic
instrument choice and pitch range).

In this chapter, we specifically perform the task of re-orchestration within the
context of homophonic music, which consists of a melody supported by an accom-
paniment. Though, existing style transfer systems often overlook or even disregard
the melodic fidelity of the generated content. For example, in the analysis of the
style transfer model Figaro (von Rütte et al., 2023), it is stated that “some salient
features such as melodies are often not preserved”. Other models only generate the
accompaniment and insert the melodic content a posteriori into a track played by a
fixed instrument such as a synthesizer (Luo et al., 2024) or a “lead” track (Zhao et al.,
2024b), without strict physical restrictions like its ambitus or register.

In this part, we present Meteor, a model for Melody-aware Texture-controllable
re-Orchestration (Section 8.1). The model is based on MuseMorphose (Wu and Yang,
2023b) and is designed to achieve the following (Figure 8.2):

• Multi-track music re-orchestration: the model automatically orchestrates a ref-
erence multi-track piece, with the instrumentation possibly specified by the
user.

• Texture-controllability: textural attributes can be controlled at both bar and
track levels.

• Melodic fidelity: the melody is preserved in the re-orchestrated piece, with the
option for the user to select the melodic instrument.

Beyond the task of re-orchestration with instrumental and texture-based style trans-
fer with melodic fidelity, we show that our model can perform a lead sheet orches-
tration task without further training in a zero-shot manner (Section 8.1.4). We
perform an objective evaluation which demonstrates Meteor’s effectiveness in bar-
and track-level controllability, melodic fidelity, and melodic instrument playability
(Section 8.2). A subjective evaluation further supports that it generates higher-quality
re-orchestrations than baseline models. For this study, a demo website is available at:
https://dinhviettoanle.github.io/meteor/.

https://dinhviettoanle.github.io/meteor/
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1 2 3 4

Flute Oboe Clarinet Saxophone Bassoon
Horn Trumpet Tuba Timpani Piano
Strings Cello Contrabass

Figure 8.3: Pianoroll of a 8-bar re-orchestration generation by Meteor with various textural
and instrumentation constraints changing each 2 bars resulting in 4 segments with different
re-orchestrations throughout the same reference piece. The melody is represented as dashed
lines. The orchestration constraints on the 4 segments are set as follows: (1) Automatic
instrumentation, no textural changes. (2) Flute + oboe duet, melodic instrument: flute,
texture: low polyphonicity. (3) Wind quintet, melodic instrument: flute, texture: low
rhythmicity. (4) Classical orchestra, melodic instrument: trumpet, texture: high rhythmicity
and polyphonicity.

8.1 Meteor: melody-aware texture-controllable sym-
bolic music re-orchestration

In this section, we introduce Meteor, a Transformer-based VAE for multi-track
re-orchestration with instrumentation controllability, bar- and track-wise texture
controllability and melodic fidelity. We first present the musical attributes considered
for textural controllability, followed by the technical contributions, particularly the
tokenization strategies developed for the controllability aspect of the task and the
melodic fidelity.

8.1.1 Textural attributes

Meteor is a model designed for both instrumental and textural style transfer (Fig-
ure 8.3). Specifically, its textural style transfer function enables the control of various
textural attributes. We consider two levels of controllability: “bar-wise” (i.e. all tracks
may be influenced by the control attribute) and “bar- and track-wise” (i.e. each track
can be individually controlled at a bar level). We first consider bar-wise control
attributes following the ones introduced in MuseMorphose (Wu and Yang, 2023b).

• Rhythmic intensity (or rhythmicity): number of sub-beats having at least one
note hit within a bar containing 𝐵 sub-beats, regardless of the track. With 1(·)
the indicator function,

𝑠rhym =
1

𝐵

𝐵∑︁
𝑏=1

1(𝑛onset,𝑏 ≥ 1)
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• Polyphonicity: average number of notes played (hit or held) during a sub-beat
in a bar containing 𝐵 sub-beats, including all tracks. We consider

𝑠poly =
1

𝐵

𝐵∑︁
𝑏=1

(𝑛onset,𝑏 + 𝑛hold,𝑏)

Each bar is characterized by a raw value of polyphonicity and rhythmicity. These
raw values are then converted into categories by splitting the distribution of poly-
phonicity and rhythmicity values in the dataset into 8 bins, with a similar number of
bars in each bin. We illustrate low and high values of these bar-wise textural features
in Figure 8.4.

� ��
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(d) High polyphonicity.

Figure 8.4: Examples of bars with different levels of bar-wise textural features: rhythmic
intensity and polyphonicity.

For finer-grained control, we propose “bar-wise and track-wise” control attributes
aiming at controlling each instrument individually among those initially selected at
a bar level.

• Average pitch: average pitch of the set of pitches {𝑝1, . . . , 𝑝𝑀} played in a track
𝑡 in a bar, expressed in MIDI value and rounded to the nearest ten.

𝑝
avg
t = round

(
1

𝑀

𝑀∑︁
𝑖=1

𝑝𝑖, 10

)
Levels of average pitches are thus divided into 13 classes, spanning from 10
to 130. For example, this attribute can be used to assign higher registers to
melodic instruments and lower registers to bass parts, or, more rarely, to have
all instruments play in their upper range to create a locally “brighter” sound,
which is a common desired orchestral effect.

• Pitch diversity: number of different pitch classes played in a track in a bar.

𝑝
diversity
t =

��{𝑝𝑖 mod 12
�� 𝑖 = 1, 2, . . . , 𝑀

}��



CHAPTER 8. ADAPTING NLP METHODS FOR MUSIC GENERATION 141

Levels of pitch diversity are divided into 13 classes, spanning from 0 to 12.
Low pitch diversity can relate to bass parts, repeated notes or arpeggios, while
high pitch diversity can encourage passing notes, embellishments or extended
chords.

We illustrate low and high values of these bar-wise and track-wise textural features
in Figure 8.5.
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(b) High pitch average (F♯4).
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(d) High pitch diversity (7).

Figure 8.5: Examples of bars with different levels of bar-wise and track-wise textural features:
average pitch and pitch diversity.

8.1.2 Tokenization, model & control strategies

Model architecture – Meteor’s architecture is based on MuseMorphose (Wu and
Yang, 2023b), originally developed for piano style transfer. The model implements a
Transformer-based Variational Auto-Encoder (VAE). As introduced in Chapter 5, a
VAE is an architecture which generates new data (e.g. text, image or symbolic music)
by sampling from a learned probabilistic latent space. More precisely, it consists of an
encoder (Figure 8.6, left), with parameters 𝜙, that maps input data 𝑥 to a distribution
𝑞𝜙 (𝑧 | 𝑥) over latent variables 𝑧. From this latent space, a decoder (Figure 8.6, right),
with parameters 𝜃, then reconstructs the data by sampling from this latent space and
generating 𝑥 through the conditional distribution 𝑝𝜃 (𝑥 | 𝑧).

The model is trained by optimizing a loss function composed of two components:
a reconstruction loss, which measures how well the decoder reconstruct the original
input from latent variables 𝑧 sampled from the approximate posterior 𝑞𝜙 (𝑧 | 𝑥) and a
regularization term that ensures that the approximate posterior 𝑞𝜙 (𝑧 | 𝑥) is close to a
prior distribution, typically a standard normal distribution 𝑝𝜃 (𝑧) = N(0, 1).

In the case of MuseMorphose, the model is trained by a 𝛽-VAE objective, where
the regularization term is weighted by a 𝛽 hyper-parameter:
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Figure 8.6: Architecture of Meteor, based on MuseMorphose. The musical content in each
bar is preceded by a header describing the playing instruments in this bar and track-wise
controls. During training, the model is trained to reconstruct 𝐾 bars. At inference time, the
user can specify different headers for each bar and starts the generation of 𝑁 bars starting
from bar 𝑖 < 𝐾 (i.e. the user can ask to generate only from a sub-part of the full piece). The
inference is guided with melody constraints at a beat level.

L (𝑥, 𝜃, 𝜙) = E𝑧∼𝑞𝜙 (𝑧 |𝑥) [log 𝑝𝜃 (𝑥 | 𝑧)]︸                          ︷︷                          ︸
Reconstruction loss

− 𝛽 ×KL

(
𝑞𝜙 (𝑧 | 𝑥)





 𝑝𝜃 (𝑧))︸                         ︷︷                         ︸
Regularization term

Tokenization – We first extend its initial REMI tokenization (Huang and Yang,
2020) using the REMI+ tokenization (von Rütte et al., 2023) which handles multi-
track music. Based on early experiments, we implement REMI+ using a vertical
parsing (Figure 4.5), where notes are grouped and ordered based on time rather
than track. We also implement a “pitch class + octave encoding” for the encoding of
pitch information in the alphabet (Section 4.1.2). instead of absolute MIDI values, in
particular, to handle melodies independently of the original octave register.

For instrumentation controllabillity, the user can select the playing instruments
from a subset of 64 instruments defined in (Dong et al., 2023) or the ensemble can
be automatically defined by the model. Instrument selection is handled through
<DescriptionTrack-[track]> tokens that indicate instruments playing in a bar which
are added in a header at the start of each bar in the token sequence.
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Figure 8.7: Example of a token sequence for a bar with a violin and a flute. As indicated in
the bar header, the violin plays in a medium register and has a high pitch diversity, while the
flute is in the upper range, with a low pitch diversity.

Control strategies – For texture controllability, the model implements multiple con-
trols over various textural attributes (Section 8.1.1). For bar-wise and track-wise con-
trols, <PitchAvg-[track]-[level]> tokens and <PitchDiversity-[track]-[level]>
tokens are added jointly in this header to describe the average pitch and pitch diver-
sity level of each track. An example of token sequence is shown in Figure 8.7. The
resulting vocabulary is presented in Table 8.2 and no additional subword tokeniza-
tion has been applied.

Following MuseMorphose, the bar-wise polyphonicity and rhythmicity classes
are encoded in a separate sequence of bar-level conditions, which is embedded and
concatenated with the latent vector and used as condition in the decoder through
an “in-attention” mechanism (Wu and Yang, 2023b). This mechanism replicates the
latent information across each timestep and layer of the decoder.

Training process – The model is trained as an end-to-end model on the Sympho-
nyNet dataset composed of 46k multi-track pieces compiled from multiple web-
sites (Liu et al., 2022)1. The resulting model is 67M parameter-large and is trained
for one week, set as an arbitrary time limit, on a single RTX 6000 24GB GPU.

8.1.3 Inference guidance for melodic fidelity

Melodies are crucial elements in music, as they often make a piece easily recogniz-
able (Stefani, 1987). Thus, a key focus of our model is melodic fidelity, ensuring that
the original melody is preserved in the generated extract, with possibly different
textures in the accompaniment parts. Models preserving the melody often insert a
posteriori a track containing the melody played by a generic instrument (e.g. synthe-
sizer), which notably prevents any melodic ornamentation (Le et al., 2022). More

1The dataset is not accompanied with musical metadata. Though, the exploration of this dataset
through our experiments tends to show that it is not restricted to “symphonies” but extends to
multi-track arrangements of pop songs, film music, etc.
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Musical attributes Vocab. size

Bar 1
Sub-beat 16
Pitch class 12
Octave 13
Velocity 44
Duration 16
Chord 113
Track 64
Tempo 65

Control attributes Vocab. size

Description track 64 (+2)
Pitch range 896 (+2)
Pitch diversity 768 (+2)

Full vocabulary size 2078

Table 8.2: Token vocabulary of Meteor. Pitch range and diversity tokens exist for each 64
tracks and for each 13 levels. Each control attribute has a <Start> and <End> token.

importantly, assigning the melody to a generic instrument restricts its integration
within the queried ensemble, preventing it from being performed with the charac-
teristics of a selected instrument. Thus, we propose an inference guidance process
designed to ensure the melodic fidelity in a more flexible way in the generation.

Firstly, the melody is identified in the original piece during a pre-processing
step using a bar-wise and track-wise skyline algorithm. The melody in each bar is
estimated as being the track with the highest average pitch within that bar2. Formally,
the melody in a bar is represented as a list 𝑆mel of the melodic tokens at each sub-beat
of the bar. For example,

𝑆mel
2 = [<PitchClass_C>, <Octave_3>, <Duration_4>]

means that the melody note on the second sub-beat of the bar is a C3 with a quarter-
note duration.

Then, the instrument playing the melody is chosen beforehand by the model
or can be specified by the user. In particular, the model or the user may choose
to use different instruments to play the melody in different bars of the generated
piece. The melody notes are then generated alongside with the re-orchestration:
tokens identified as melody in the original piece are treated as beat-level conditions
at inference time. This process is described in Algorithm 1, omitting the header
construction, edge cases, and implementation details.

Following Figure 8.7, after a <Bar> token and the enforced header describing
this bar, each <Sub-beat> token generated by the model is followed by an enforced
<Track> token corresponding to the chosen melodic instrument, along with the tokens
corresponding to the melody note played at this time position (Algorithm 1, line 6).
The next tokens (i.e. all the accompaniment tokens until the next melodic tokens)

2This assumption is a compromise as the melody can possibly be misdetected (e.g. melodic bassoon
or cello). Further improvements may be implemented with track role identification (Guo et al., 2019).
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are then generated auto-regressively (Algorithm 1, line 9). In particular, we do not
restrict the model to generate additional notes played by the melodic instrument.

Algorithm 1 Inference guidance for a bar 𝑛 containing 𝐵 sub-beats

Parameter: 𝑆mel, a dictionary containing melodic tokens in the bar 𝑛.
Parameter (optional): 𝑖, the melodic instrument at bar 𝑛.

1: 𝑋gen ← [ ] ⊲ generated sequence of tokens
2: 𝑏 ← 0 ⊲ current sub-beat position
3: while 𝑏 < 𝐵 do
4: t←Meteor(𝑋gen) ⊲ t is a single generated token
5: if t is <Sub-beat_𝑘> then
6: 𝑋gen ← Concatenate(𝑋gen, [<Sub-beat_𝑘>, <Track_𝑖>], 𝑆mel

𝑘 )
7: 𝑏 ← 𝑘
8: else
9: 𝑋gen ← Concatenate(𝑋gen, [t])

10: end if
11: end while

In further experiments described in Section 8.2.3.1, the melodic enforcement
is partially released by allowing the model to infer <Octave> tokens to evaluate its
relation with the instruments’ register. Going further, one advantage of keeping
the original melody is that our re-orchestration system can be used for lead sheet
orchestration.

8.1.4 Zero-shot lead sheet orchestration

While Meteor has been specifically trained for a re-orchestration task, it can be
adapted into a lead sheet orchestration model without requiring further training,
effectively performing as a zero-shot learning model. A lead sheet is a melody with
chord annotations. The model takes as input a lead sheet provided as a multi-track
MIDI file, composed of a melodic track and a second track with block chords (i.e. non-
arpeggiated). By interpreting the lead sheet as a low-rhythmicity multi-track piece,
Meteor is able to orchestrate this lead sheet with specific instruments by increasing
the rhythmicity.

8.2 Evaluating Meteor

In this section, we first present an objective evaluation to assess our model’s perfor-
mance in terms of fidelity and controllability in comparison with baseline models.
Compared to the field of NLP where metrics have been developed and accepted to
evaluate generative models, the MIR community still assumes that a human sub-
jective evaluation is necessary to assess the quality of music generation. To this
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end, our objective evaluation is supported by a user study conducted as a subjective
evaluation on the tasks of re-orchestration and lead sheet orchestration.

8.2.1 Baseline models

We compare Meteor with two open-source and state-of-the-art style transfer models
selected from the ones presented in Table 8.13 and adapt them as multi-track re-
orchestration models:

• Figaro (von Rütte et al., 2023): This multi-track style transfer model is a texture
style transfer model and can directly perform the re-orchestration task. For
the evaluation of the controllability, we focus on the proposed “note density”
controls, which corresponds to the rhythmic intensity in our work.

• AccoMontage-band (Zhao et al., 2024b): This model is originally designed to
take a lead sheet as input and generate a multi-track pop band arrangement.
We adapt this model to evaluate its performance as a re-orchestration system.
To this end, we first pre-process a multi-track input its lead sheet represen-
tation i.e. we extract the melody as the skyline stream and the chords using
the Chorder package4. This extracted lead sheet is then used as the input
for the model which generates the re-orchestration of the initial input. Due
to the potentially inaccurate assumption that the melody corresponds to the
skyline stream, we perform earlier experiments using SheetSage (Donahue
et al., 2022) to extract both melody and chords for the lead sheet extraction
from the multi-track input. However, this approach produced lower-quality
generations. The model can a priori perform texture transfer, but its control-
lability is limited. It transfers the texture of an existing music piece, referred
to as the “texture donor”, onto the target musical content. This thus restricts
texture controllability to the set of pre-existing texture donors.

We also consider a multi-track extension of MuseMorphose (Wu and Yang, 2023b),
initially developed for piano textural style transfer, in which the original REMI
tokenization is simply replaced with a REMI+ tokenization.

For the objective metrics, we compare these baselines with two versions of our
model: “Meteor without inference guidance”, which includes bar- and track-level
controllability but without melody constraints, and “Meteor” which includes these
melody constraints.

3BandControlNet (Luo et al., 2024), PopMAG (Ren et al., 2020) and GetMUSIC (Lv et al., 2023)
were not included as their codes or checkpoints were not publicly available at the time of this work.

4https://github.com/joshuachang2311/chorder

https://github.com/joshuachang2311/chorder
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8.2.2 Objective & subjective metrics

Objective metrics – We first consider objective metrics to evaluate the fidelity with
respect to the reference piece, both overall and specifically for the melody. We also
consider a metric to assess how realistic the inference of instruments is with respect
with their actual pitch distributions.

• Overall fidelity – Following (von Rütte et al., 2023), we consider the overall
fidelity 𝜑overall ∈ [0, 1] as the chroma similarity between the original piece and
the generation. Let vinit

𝑏 (resp. vgen
𝑏 ) the chroma vectors of bar 𝑏 of the initial

(resp. generated) piece, including all the tracks, and 𝑁 the number of bars. The
chroma similarity is defined as the average of the bar-wise cosine similarities
𝑆𝐶 (·, ·) between these chroma vectors:

𝜑overall =
1

𝑁

𝑁∑︁
𝑏=1

𝑆𝐶 (vinit
𝑏 , v

gen
𝑏 )

• Melodic fidelity – For a piece, let 𝑋𝑏,mel be the token sequence representing the
melody in bar 𝑏. For a track 𝑡 in the generation, let 𝑋𝑏,𝑡 the token sequence of one
track 𝑡 at this bar 𝑏. Let 𝑑 (·, ·) be the normalized Levenstein edit distance: given
two sequences 𝑋1 and 𝑋2, we normalize the raw distance by max ( |𝑋1 |, |𝑋2 |) so
that |𝑑 (𝑋1, 𝑋2) | ≤ 1. We define the melodic fidelity of a track 𝑡 at a bar 𝑏 as
𝑑 (𝑋𝑏,mel, 𝑋𝑏,𝑡). Intuitively, by taking the minimum of these distances among the
tracks, we aim at selecting the track which is playing the melody within a bar.
Therefore, the smaller the distance, the greater the melodic fidelity. Namely,
we define the melodic fidelity 𝜑𝑏 at a bar 𝑏 as:

𝜑𝑏 = 1 − min
𝑡∈tracks

𝑑 (𝑋𝑏,mel, 𝑋𝑏,𝑡)

Finally, we define the melodic fidelity 𝜑mel ∈ [0, 1] of a full multi-track genera-
tion of 𝑁 bars as the average of these bar-wise fidelities:

𝜑mel =
1

𝑁

𝑁∑︁
𝑏=1

𝜑𝑏

• Pitch distribution similarity per instrument – To evaluate the re-orchestration
instrumental “realisticness”5, we compare the distribution of pitches per instru-
ments between a generated content and a reference dataset. Let 𝑃𝑖 (resp. 𝑄𝑖) the
distribution of pitches played by the instrument 𝑖 in a reference dataset6 (resp.

5We call an inferred instrument “realistic” if its generated pitch distribution is similar to its
observed pitch distribution

6This reference dataset includes the SymphonyNet dataset and an equal number of pieces from
the LakhMIDI dataset as they are training datasets for Meteor or Figaro.
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in the generated music). We consider 𝑖 an instrument among the 𝐼 available
instruments. For JSD(· ∥ ·) the Jensen-Shannon Divergence, we define the
instrument pitch distribution similarity 𝜌 ∈ [0, 1]:

𝜌 =
1

𝐼

𝑇∑︁
𝑖=1

(1 − JSD(𝐷𝑖 ∥ 𝑄𝑖))

Regarding textural controllability, we then consider two bar-level metrics for
polyphonicity and rhythmicity and two bar- and track-level metrics for average pitch
and pitch diversity.

• Bar-controllability – Polyphonicity and rhythmicity are evaluated at the bar
level by including all tracks. Following (Wu and Yang, 2023b), we define

𝜌𝑎𝑡𝑡𝑟 = SpearmanCorr(𝑎attr, 𝑠attr)

where 𝑠attr is the user-specified attribute class (i.e. polyphonicity or rhythmicity)
and 𝑎attr is the class computed from the model generations given the user
inputs.

• Track-controllability – Average pitch and pitch diversity are also evaluated with
a Spearman correlation between the user input and the class computed from
the generation, for each track and each bar.

For this evaluation, each model generates 20 samples of 8 bars each from picked
randomly reference pieces. The control signals are randomly set and the instruments
automatically chosen by the models.

Subjective metrics – We then conduct a user study to compare Meteor with the
two baseline models. We evaluate the quality of the generations on the task of re-
orchestration (multi-track to multi-track) and lead sheet orchestration (lead sheet
to multi-track). For both tasks, participants listen to a 8-bar long reference (multi-
track piece or lead sheet) and samples generated by the 3 models (Section 8.2.1). In
particular, the generated MIDI from all the models are converted into audio samples
using the basic MuseScore sound fonts. For the first task, they are asked to rate the
generation contents on a 6-point Likert scale from 0 (very low) to 5 (very high) based
on the following criteria and guidelines:

• Overall musicality: how enjoyable is the music?

• Naturalness of the generation: to what degree does the piece meet your
expectations for musical plausibility?

• Textural fidelity with the reference: how does the extract reflect the reference
“mood” (calmness, energy...)?
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• Convincing use of instruments: how well do the instruments blend together
within the overall arrangement?

• Content coherency with the reference: how much do you recognize the refer-
ence by listening to the sample?

The same aspects are evaluated for the lead sheet orchestration task, without “textural
fidelity” and with the additional criterion:

• Creativity: how inventive while being still pleasant to hear, is the audio extract?

We let the model choose the melodic track automatically (or randomly for Figaro and
AccoMontage-band) in the re-orchestration task. For Meteor, the textural parameters
are kept identical to those of the reference, ensuring that the criterion of “textural
fidelity” is appropriate. Instead, for lead sheet orchestration, we insert a posteriori the
melodic track played by a synthesizer, following the method of AccoMontage-band.
This ensures a fair comparison of all models in terms of melody perception by the
listener, allowing for a focused comparison between the generated accompaniments.

Figure 8.8: Screenshots of the user study for Meteor subjective evaluation.

The survey consists of 6 pieces for the re-orchestration task and 4 for lead sheet
orchestration, chosen to ensure diversity. For each piece, the instrumentation is fixed
for all models, including different cases: where the number of target instruments
is smaller or greater than the source instruments. Each model generates four re-
orchestrations for each 6 pieces. Participants are randomly assigned to one of the
four groups, with each group evaluating a different set of samples. A total of 24
participants for the re-orchestration task, and 13 for lead sheet orchestration have
answered the survey. They have various musical backgrounds, from individuals
with no musical experience (15%) to professional musicians (8%), with a majority of
amateur (46%) to intermediate musicians (31%). The user study has been conducted
between January and February 2025 using the Université de Lille’s survey platform7

as shown in Figure 8.8. The audio samples presented to the users can be accessible
on the demo website of this project8.

7https://enquetes.univ-lille.fr/index.php/445726?lang=en
8https://dinhviettoanle.github.io/meteor/

https://enquetes.univ-lille.fr/index.php/445726?lang=en
https://dinhviettoanle.github.io/meteor/
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Model
Overall
fidelity ↑

Melodic
fidelity ↑

Instr. pitch
similarity ↑

Bar-controllability ↑ Track-controllability ↑
Rhyth. Polyph. Pitch diver. Avg. pitch

1 Figaro .735 ±.24 .271 ±.08 .617 ±.14 .867 – – –
2 AccoMontage-band .756 ±.10 .338∗ ±.09 .583 ±.17 – – – –

3 Multi-track MuseMorphose .932 ±.10 .527 ±.13 .696 ±.18 .941 .936 – –
4 Meteor (w/o inference guidance) .918 ±.11 .491 ±.16 .755 ±.13 .972 .951 .929 .926
5 Meteor .927 ±.10 .632 ±.18 .780 ±.12 .950 .932 .897 .821

6
Multi-track
MuseMorphose

Flute-oboe duet .888 .479 – .919 .710 – –
7 Woodwind quintet .932 .519 – .956 .875 – –
8 Classical orchestra† .947 .511 – .921 .676 – –

9
Meteor
(w/o infer. guidance)

Flute-oboe duet .837 .457 – .967 .782 .949 .873
10 Woodwind quintet .903 .519 – .971 .860 .961 .853
11 Classical orchestra† .917 .493 – .975 .898 .958 .798

12

Meteor
Flute-oboe duet .837 .650 – .936 .715 .786 .711

13 Woodwind quintet .909 .651 – .927 .862 .889 .875
14 Classical orchestra† .912 .720 – .953 .867 .909 .780

Table 8.3: Objective metrics for the re-orchestration task, with automatic choice and user-
defined ensembles. (∗) we evaluate the generated content only, without the inserted melodic
track. (†) Classical orchestra includes 11 instruments (4 woodwinds, 2 brasses, timpani, 4
strings).

8.2.3 Results

In this section, we present the results of our objective and subjective evaluations. Our
results show that Meteor can outperform the baseline models in the re-orchestration
task, both on the objective and subjective metrics. For the lead sheet orchestration
task learned as a zero shot task, Meteor can perform as well as models specifically
trained for this task.

8.2.3.1 Objective evaluation

Quantitative metrics for re-orchestration are summarized in Table 8.3 (rows 1–5).
MuseMorphose and the two versions of Meteor manage to outperform baseline
models in all metrics. With Figaro, they outperform AccoMontage-band in pitch dis-
tribution fidelity, as both are trained on orchestral instruments while AccoMontage-
band is trained on band instruments. MuseMorphose and the two Meteors achieve
comparable overall fidelities and adding melodic constraints naturally leads to an
improvement in melodic fidelity. It is worth noting that Meteor does not reach a
perfect score: inference guidance does not prevent the melodic instrument from
adding extra notes beyond the exact melody, a phenomenon which can be found in
orchestral music, often referred to as “decorative melody” (Le et al., 2022).

Though, this increase in melodic fidelity results in a drop in controllability
metrics compared to Meteor without melody. This may result from using indepen-
dent control methods, either latent or token-based, for beat-, bar- and track-level
attributes. The compatibility between latent space-based or token-based controls
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remains unexplored and could be further investigated to improve the understanding
of controllable models.

Instrumentation impact – We further study the impact of the chosen instrumenta-
tion on our models’ performances (Table 8.3, rows 6–14). We select three musical
ensembles: woodwind duet, quintet, and classical orchestra, assigning the melody
to the flute in each case. For Meteors, increasing the number of instruments helps
the model maintaining better fidelity to the reference piece and improves bar-wise
attributes. With more instruments, the model has a larger instrumental flexibility
and a broader range of options to assign each track a part that aligns with the control
signals. Moreover, all the models demonstrate better bar-wise polyphonicity control-
lability when the instrumentation is chosen automatically (rows 3–5) compared to
each user-defined ensembles. In other words, they manage to effectively select the
most suitable ensemble to match the requested polyphonicity.

Melodic
instrument

Average note in instr. range
(register bounds)

Average pitch
in generations

Out of range
generated notes

1 Flute F5 (B3-C7) D5 0.0%
2 Bassoon E3 (B♭1-B4) B♭2 4.8%
3 Trumpet A4 (F#3-C6) G4 4.3%
4 Violin A5 (G3-B7) C5 1.6%
5 Cello B♭3 (C2-A5) F3 3.8%

Table 8.4: Average pitch of melodic instruments with octave inference in the generated music
by Meteor compared to their real instrumental range.

Melodic instrument range playability – We then study the playability of gener-
ations in terms of physical constraints of the melodic instrument. Unlike generic
instruments such as synthesizers (Luo et al., 2024; Zhao et al., 2024b), orchestral
instruments are limited in their range and usually play in a specific register (Rimsky-
Korsakov, 1964). To evaluate such range playability, we generate five extracts from
the same original reference without textural control attributes and assign the melody
to an instrument. Based on our pitch class-based tokenization, we let the model infer
the <Octave> tokens of the melody notes, while the other components (pitch class
and duration) are enforced during inference guidance. As presented in Table 8.4, the
model manages to generate instrumental parts which match with their usual register,
with still a limited amount of out of range notes.

However, while the difference between the generated average pitch and its middle-
range note is below a fourth for woodwinds and trumpet (rows 1–3), the average
generated pitch for the cello and the violin (rows 4–5) are much lower than the
theoretical average pitch (e.g. a sixth lower than the midpoint note of the violin’s
full register). Violin parts and, more generally, string parts, are indeed typically
written below the extreme high register of the instrument (Adler and Hesterman,
1989, p. 52):
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It must be kept in mind that the extremely high range on any string instrument
is difficult to control, and only in the past one hundred fifty years has it been
used extensively.

Analysis of token embeddings – With a more intrinsic approach, latent spaces can
often be structured by musically-meaningful concepts. Therefore, we further explore
the internal representation of <Track> token embeddings. We present the projection
through t-SNE of learned embeddings for each <Track> token in Figure 8.9. Interest-
ingly, instruments having similar roles or pitch range or ambitus have embeddings
which are close in this space. Instrument families, such as keyboard instruments, gui-
tars, bass and treble (or high-pitch) instruments seem to stand out in the embedding
space structure.

flute clarinet

violin

cello

contrabass

vibraphone

piano

lead

alto-saxophone

tenor-saxophone
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trumpet
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Figure 8.9: Projection through t-SNE of <Track> tokens embeddings. Instruments having
similar roles are found to be close in this space (red groups).

8.2.3.2 Subjective evaluation

The results from our user study following the subjective metrics presented above on
the task of re-orchestration and lead sheet orchestration are shown in Figure 8.10.

Re-orchestration task – Meteor outperforms in four of the five criteria on average
(Figure 8.10, left). In particular, it holds significant advantage over the two other
models on the overall musicality and naturalness (t-test: 𝑝 < .01 for both). Further
analysis highlights notable insights on other criteria.

• Texture fidelity. Meteor achieves significantly better results than the baseline
models, in particular, compared to AccoMontage-band (𝑝 < .01). This may
be attributed to the lead sheet input which simplifies the original piece by
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Figure 8.10: Average scores obtained on the re-orchestration and lead sheet orchestration
tasks according to the user study. A 6-point Likert scale ranging from 0 (very low preference)
to 5 (very high preference) is used.

ContentInstrumentsNaturalnessOverall Texture
0

1

2

3

4

5

ContentInstrumentsNaturalnessOverall Texture
0

1

2

3

4

5

Sc
or
e More source instruments

More target instruments

Figure 8.11: Impact of the number of source and target instruments on Meteor’s orchestra-
tions.

reducing it to melody and chords, losing crucial textural characteristics and
making it challenging for the model to generate a similar musical texture.

• Instrumental use. Meteor and Figaro show comparable performances and
both outperform AccoMontage-band. Given that the ensembles have been set
to standard orchestral instruments, this shows that AccoMontage-band, which
was trained with pop band instruments, can weakly adapt to unseen instru-
ments. However, when comparing scenarios with varying numbers of target
instruments relative to source instruments (Figure 8.11), Meteor performs
better on instrumentation reduction and weaker when the target ensemble is
larger than the reference on all criteria. This may be attributed to the need for
generating longer sequences for these larger ensembles, highlighting a potential
limitation in the model’s ability to capture long-term dependencies.

• Content coherency. Figaro has an average score significantly lower than Me-
teor and AccoMontage-band (𝑝 < 1e−6). As noted in the original study, Fi-
garo often fails to preserve the melody, highlighting that content coherency
is strongly influenced by the retention of the melodic line. This effect is sup-
ported by the observation that Figaro’s content fidelity is more comparable to
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other models in the lead sheet orchestration task (Figure 8.10, right), where the
melody is inserted unchanged a posteriori.

Lead sheet orchestration task – Across all metrics, Meteor achieves performance
ranging from comparable to better than the other models (Figure 8.10, right). In
particular, while AccoMontage-band has been specifically trained on this task, it
only outperforms Meteor on average on the creativity criterion. This zero-shot
learning ability highlights Meteor’s versatility in performing tasks closely related to
orchestration with comparable performances with state-of-the-art models.

8.3 Towards realistic and humanly playable symbolic
music generation
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Figure 8.12: Extract of a score generated by Meteor with difficult fingerings which may
not respect physical constraints of the instrument. These includes awkward fingerings
(large gaps,. . . ) or fingering transitions (quick transitions between chords and double stops,
extreme ambitus,. . . ). This extract is a sample from the user study.

In this chapter, we presented Meteor, a model for texture-controllable multi-track
style transfer with a focus on melodic fidelity specifically trained for a task of re-
orchestration. The model performs this task through token constraints at a bar- and
track-level, with inference guidance for melodic fidelity. On a re-orchestration task,
Meteor outperforms multi-track style transfer models on subjective and objective
evaluations. We show that our model can be adapted into a lead sheet orchestrator
and is comparable to a model trained for this task.

However, while this model could be improved in many ways, such as its control-
lability at the scale of the piece (Lu et al., 2023) or its long-term structure (Shih et al.,
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2023), a limitation of many symbolic generation systems is their ability to generate
realistic and playable sheet music. In our case, although Meteor succeeds in ensuring
that melodic instruments fit their range constraints, their technical playability such
as convenient fingerings, breath considerations, or logical articulations, have not
been thoroughly studied and are systematically overlooked in music generation
studies.

For example, Figure 8.12 shows a part of a score extracted from a generation from
Meteor, where the requested ensemble is a piano trio. First, since the generation
is performed auto-regressively, the model tends to produce multiple simultaneous
notes even for instruments like the violin and cello, which are typically monophonic
despite their ability to play chords. However, while the generated extract includes
chords that fall within the playable pitch range of the instruments, they often involve
complex fingerings or fingering transitions, making the resulting score challenging –
if not impossible – for a single piano trio to perform.

Pursuing the generation of humanly playable music would necessitate rethinking
the training data, as it would require high-quality sheet music that already incor-
porates well-considered instrument-related physical constraints. Though, going
further, ensuring playability in relation to instrumental constraints, timbre effects,
and instrument groupings (Goodchild and McAdams, 2018), as well as incorporating
varying levels of performance difficulty (Vásquez et al., 2023) would represent a
significant advancement towards automatic humanly playable orchestration and
more broadly, symbolic music generation.
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The Music Information Retrieval (MIR) community has been increasingly adapt-
ing Natural Language Processing (NLP) approaches, in particular due to both similar-
ities between language and music, but also the breakthrough and the performances of
Transformer models in NLP. Thus, this thesis first proposed a structured organization
of methods developed initially for NLP in the field of symbolic MIR following three
axes: sequential representations, models and tasks. Beyond this structured overview,
our technical contributions follow this organization and explore multiple levels
of symbolic music content representations resulting from tools adapted from NLP
approaches in MIR.

• We start by reconsidering the choice of low-level representation to increase the
sequential representation expressiveness. We study how choosing a token
alphabet based on interval instead of absolute pitch tokens and grouping tokens
through BPE can impact the performance of models on downstream tasks.

• We then study model mechanistic interpretability by analyzing an abstract
representation of symbolic music processed by the model: the attention mecha-
nism. We study the attention behavior through attention span, as well as the
relevance of attention heads in a model trained on functional harmony analysis.

157
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• Finally, we manipulate representations for a symbolic music generation task.
We present Meteor, developed for a task of re-orchestration with texture
controllability and melodic fidelity and which relies on token constraints to
perform this task.

The study of the relationships between NLP and MIR, along with the technical
work presented in this thesis, raises several points of discussion and points toward
potential future directions for further applications of NLP approaches within the
MIR domain.

9.1 Discussion and future directions

The previous chapters outline various NLP approaches adapted to music data, re-
sulting in the development of state-of-the-art tools for multiple symbolic MIR tasks.
While these results are shown to be empirically effective, it is worth taking a step
back on this practice by questioning the musical appropriation of tools that have
originally been thought for natural language, given that both modalities still share
several differences as discussed in Chapter 2. We believe that taking these distinc-
tions into consideration and incorporating common practices from the NLP field
could help guide future directions in the MIR field.

9.1.1 To what extent can NLP be applicable to MIR?

Despite the numerous borrowings of the MIR community from NLP methods, the
direct application of such NLP methods to symbolic music data can be questioned,
due to a few technical differences between these two fields.

Data availability – Text data differ from symbolic music data by a much wider
availability. For example, large language models such as GPT-3 (Brown et al., 2020)
are trained on datasets containing 300 billion tokens. Compared to symbolic music,
multiple models (Ens and Pasquier, 2020; von Rütte et al., 2023) are trained on the
LakhMIDI dataset which is composed of 175k songs, resulting in only 26M tokens
using a basic MIDI-like tokenization. Moreover, while new text data are released in
large amounts, contributing to extending datasets such as CommonCrawl based on
publicly available text, symbolic music data is far less likely to grow at a comparable
rate, since music transcriptions or compositions seen as symbolic music are released
much less frequently than text data, such as textual exchanges, news articles, or blog
posts, etc... Thus, there is a huge gap between the amount of data needed to train
text models, on which Transformers are inherently efficient with such a large amount
of data, and the availability of symbolic music data.
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One way to expand symbolic music datasets could be through the use of audio
datasets transcribed into symbolic music data. Audio-to-symbolic transcription
tools have shown strong performance (Jamshidi et al., 2024) and could be leveraged
to significantly increase the volume of symbolic music data. Hsiao et al. (2021)
have notably built a symbolic music dataset through transcription, Pop1k7 which
is however restricted to pop piano music. This further raises the issue of music
diversity in available datasets, which may be limited not only in quantity but also
in variety. Similarly to classical music data which is largely biased towards Western
music (Hawthorne et al., 2019), contemporary music such as pop music may be
stemming from non-western countries (Wang et al., 2020a) but is still restricted to
tonal music. In generative tasks, these biases in training data are naturally reflected
in the generated content. When using Transformers for symbolic music processing –
which are inherently designed for very large datasets – it is therefore crucial to take
into account the limited amount and restrained diversity of available musical data
compared to textual data for which these models were originally developed.

Musical alphabet – The Latin alphabet, on which most NLP studies are based, is
composed of homogeneous elements or characters. When applying NLP methods
to musical data, there is a need of defining an alphabet. Though, musical alphabets
based on the MIDI protocol are heterogeneous, consisting of multiple types of tokens,
such as <Velocity> or <Duration>. Therefore, musical notes are represented by
combinations of these atomic elements assembled in a unidimensional sequential
way which also raises the issue of simultaneity in music presented in Section 2.2.1.
Moreover, this combinatorial aspect is fundamental in music as two slightly different
combinations can lead to radically different notes. In substance, this is comparable
to Chinese characters that can be based on different radicals, leading to entirely
different meanings (Wong et al., 2022). Such models have been developed for Chinese
NLP (Tao et al., 2019), where a model not only takes as input words like standard
NLP models, but also their decomposition into radicals.

Moreover, NLP models can handle noisy text as long as it does not constitute
a significant portion of the data (Khayrallah and Koehn, 2018). However, even
though symbolic music generation is often synonymous with MIDI generation as
illustrated in Chapter 3, producing high-quality sheet music from this generated
MIDI is challenging since raw MIDI data is inherently noisy when converted to sheet
music. For example, enharmonic equivalences are generally not disambiguated, or
ritardando or accelerando are often transcribed as successive precise tempo changes
events. Building a music alphabet relying on sheet music-oriented formats, such as
musicXML or **kern may be a starting point to generate directly high-quality sheet
music. This may also be a step towards playable score generation, as underlined in
Section 8.3. This raises however the issue of dealing with much lower amount of
available sheet music-oriented training data, compared to MIDI data.

However, despite these differences, current practices and developments from the
NLP field can presumably inspire future research in symbolic MIR, beyond a simple
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application of NLP tools in MIR.

9.1.2 Towards lighter models

In response to increasing computational demands, especially with the rise of
LLMs (Sevilla et al., 2022), various studies have focused on developing compu-
tationally efficient yet lighter models (Zhu et al., 2023a). Such optimizations leading
to lighter models are desired for multiple reasons, including reducing training or
inference time, as well as energy consumption or hardware costs. Multiple studies
have explored model compression with knowledge distillation (Gou et al., 2021).
This distillation process implements a lightweight student network which is trained
to reproduce a pre-trained teacher network. This results in a lighter student network
that is faster, in particular, faster at inference. In NLP, this has led to lightweight
models such as DistilBERT (Sanh et al., 2020), 40% lighter than a BERT model. In
contrast with distillation, pruning methods are based on altering an initial model
by removing weights. Transformers are shown to be possibly pruned by removing
most of the attention heads while keeping decent performance (Michel et al., 2019)
and can help model explainability (Voita et al., 2019). Finally, model design opti-
mizations for lightweight processing have been developed such as token skipping in
PoWER-BERT (Goyal et al., 2020) or sliding window attention with cache in Mistral
7B (Jiang et al., 2023). In MIR, such advances towards lighter models have been
tackled for audio music (Douwes et al., 2023).

In the field of symbolic MIR, models are currently not as big as NLP models which
can reach 175B parameters in the case of GPT-3 (Brown et al., 2020). However, recent
models are increasingly requiring higher computational power, such as the use of
4×40GB GPUs to train a multi-track generative model (Shu et al., 2024). Therefore,
there is a growing recognition of the efficacy of lighter models for symbolic music
data. This can be done through lighter sequential representations with the development
of Compound Words (Hsiao et al., 2021) for smaller sequences, or smaller vocabulary
resulting in smaller embeddings (Li et al., 2023b). Such improvement towards lighter
models’ internal representations can also occur through lighter attention mechanisms
designed to take into account music repetitiveness (Yu et al., 2022). The development
of expressive tokenization strategies presented in Chapter 6, such as interval-based
tokenization or BPE supertokens, typically contributes to this objective by providing
the model with more compact representations of music.

These studies emphasize a promising direction for the application of lighter
models in symbolic MIR research. This direction may involve developing light meth-
ods specifically tailored for symbolic music, featuring fewer parameters, reduced
memory usage, or shorter training or inference times. Such light models can have
practical applications in real-time music generation, including improvisation where
an instantaneous inference time is required.
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9.1.3 Towards model explainability

Deep learning models are often perceived as black boxes, lacking explanations
for the decisions they make. Several studies address the explainability aspects
of NLP tools (Zhao et al., 2024a). Beyond model-agnostic tools, explainability
methods that take a model’s internal structure into account can bring different ways
of understanding it (Bereska and Gavves, 2024).

Concept-based interpretability involves assessing a model’s performance on
probing tasks. They assume that its effectiveness is directly tied to its capacity to
accurately represent high-level concepts from data. In NLP, these probing tasks can
vary in nature (Conneau et al., 2018a), encompassing syntactic or semantic informa-
tion retrieval (Kim et al., 2019). Mechanistic interpretability assumes that inner
mechanisms of a model may behave following human intuitions. It is is frequently
conducted on word embeddings to assess how well a model represents words in
relation to each other by examining relations like word similarity or analogies (Wang
et al., 2019). The attention mechanism for Transformer-based models is notably
studied in depth as it can reflect several links between tokens of a sentence. In
Chapter 7, we have chosen this approach by analyzing models through its attention
mechanism.

Recently, rationalization (i.e. providing a natural language explanation of the pro-
cess) based on LLMs has been explored to provide musical descriptions of symbolic
music data (Krol et al., 2022). LLMs developed for chat can also be evaluated in their
reasoning (Yuan et al., 2024) in particular through chain-of-thoughts in audio (Deng
et al., 2024b) or symbolic music (Zhou et al., 2024), assessing their musical under-
standing and knowledge for future human-computer co-creation systems. These
chain-of-thoughts are notably a current trend, leading to initiatives such as a task at
MIREX 2025 on audio music reasoning Q&A1.

Going further, providing interpretable tools that align with human perception
can be challenging due to the inherent subjectivity of music. In the context of music
composition, stylistic aspects may offer different explanations, and certain passages
may only be explained by artistic effects desired by the composer (Crocker, 1966).
Despite this subjectivity and artistic aspect present in music, studying the explain-
ability of tools for symbolic music can be a way to gain a better understanding of
how models process music data. For instance, analyzing models on simple tasks
such as style classification can highlight or confirm musicological characteristics in
a particular style. Only a few studies have considered linking a model’s behavior
with music theory aspects such as cadences (Loiseau et al., 2021) or chord pro-
gressions (Cosme-Clifford et al., 2023). Similarly, with the increasing popularity
of text-to-music systems, interpreting models on such tasks may reveal relations
between specific words with the resulting generated content, potentially leading
to questions regarding biases within the currently available datasets of symbolic

1https://www.music-ir.org/mirex/wiki/2025:Music_Reasoning_QA

https://www.music-ir.org/mirex/wiki/2025:Music_Reasoning_QA
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music. For example, the word “sadness” is often simplistically associated with minor
keys; though, it is rarely limited to tonality alone2. Understanding which musical
features are reflected in music generated by a text-to-music system prompted with
such terms would be a valuable contribution. The MIR community is more and more
encouraging model explainability, for example with a tutorial at ISMIR 20253.

9.1.4 A need for benchmarking and comparative analysis

Benchmarks (i.e. commonly accepted combinations of datasets, tasks, and evaluation
metrics against which new models can be tested) are crucial for meaningful model
comparisons. In several other research domains, such benchmarks do exist. In image
processing, there are historically established datasets like MNIST (Lecun et al., 1998)
and ImageNet (Deng et al., 2009) that have served as widely accepted benchmarks
for evaluating model performance. The NLP community has introduced several
benchmarks such as GLUE (Wang et al., 2018) to evaluate language understanding.
Other specific NLP benchmarks have also been developed, such as cross-lingual
benchmarks (Liang et al., 2020b) or domain-specific benchmarks (Peng et al., 2019).
In the music audio domain, common benchmarks are starting to gain prominence.
The HEAR challenge (Turian et al., 2022) includes 19 evaluation tasks and brings
together multiple models for comparative analysis. Such benchmark have begun to
be built in audio music, in particular to evaluate latent diffusion-based text-to-music
systems4.

In symbolic MIR, there is currently an apparent lack of standardized benchmarks.
Bundling of datasets, tasks, and evaluation metrics for symbolic music data may
provide frameworks to compare and evaluate models. The re-introduction of MIREX
challenges5 in 2024 is an encouraging step towards model benchmarking. However,
such challenges have mainly covered audio tasks. With the recent spread of text
LLMs capable of processing ABC notation, ZIQI-Eval (Li et al., 2024) has been
proposed to objectively compare models trained to answer multiple choice music-
related questionnaires.

The question of model evaluation is fundamental. Subjectivity is often present in
music, both in analysis tasks, such as functional harmony analysis in which annotator
biases can emerge, and in generation tasks. Evaluation of generative systems through
listening tests can be even more subjective (Yannakakis and Martínez, 2015), in
particular when performed by non-experts (Amabile, 1982). Despite the fact that
objective evaluation metrics have been proposed (Wu and Yang, 2020; Kumar and
Sarmento, 2023), MIREX’s symbolic music generation tasks still rely on listening
tests for evaluation. Valuable contributions regarding these benchmarking issues can

2For example, Chopin’s Étude Op. 10, No. 3 in E major is often identified as “Tristesse” (sadness).
3https://ismir2025.ismir.net/program-tutorials#tutorial-2
4https://github.com/haoheliu/audioldm_eval
5https://www.music-ir.org/mirex

https://ismir2025.ismir.net/program-tutorials#tutorial-2
https://github.com/haoheliu/audioldm_eval
https://www.music-ir.org/mirex
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be an evaluation toolkit library aiming at retrieving objective features from generated
pieces and comparing them to those extracted from a test set. Symbotunes (Skierś
et al., 2024), a standardized framework aiming at manipulating symbolic music gen-
erative models, may be a first step towards such toolkit but lacks the evaluation part.
However, this may explain the challenges in establishing such music benchmarks:
the inherent subjectivity of music aesthetics restricts the possibility of “reference
data”, which are essential for model evaluation.

Another key challenge in music generation is that each model is typically spe-
cialized in a specific task. For example in Chapter 7, where we introduced the new
task of re-orchestration, the choice of baseline models was limited to those adaptable
to re-orchestration, though not specifically designed for it. For fair benchmarks,
introducing objective auxiliary tasks for MIR may allow models to be evaluated on
objective metrics in addition to their primary task.

9.1.5 Exploring further models for symbolic MIR

Beyond improving existing MIR models, several NLP models implement mecha-
nisms or optimizations that can be relevant to symbolic music data. The Longformer
model (Beltagy et al., 2020) aims to represent long documents by implementing linear
complexity attention. Moreover, it also manages to perform well on character-level
language modeling tasks. These two characteristics are fundamental in symbolic mu-
sic, as long-range dependency is essential in musical token sequences. Additionally,
unlike text where words are often considered as basic tokens, such grouping is less di-
rect in music, so that symbolic music tasks are more similar to textual character-level
tasks. On the representation side, BERT-sentence (Reimers and Gurevych, 2019)
may be relevant in the field of symbolic MIR. This model builds embeddings for
entire sentences and performs comparisons between pairs of sentences with a faster
computing time. In symbolic music, where segmentation is a recurrent issue, such
textual sentence-derived representation holds potential relevance. In more practical
cases, pattern matching is often used in incipit search engines such as RISM6: an
embedding-based query method may instead help improving the tool’s flexibility.

Finally, beyond NLP and the excitement of the general public for tools based
on natural language generation, another trend stemming from research studies is
image generation, in particular, text-to-image. Image processing models have already
been used for symbolic music, including convolutional neural networks (Choi et al.,
2017), and the recent rise of diffusion models in this field has motivated its adaption
for music. Numerous recent models integrate state-of-the-art techniques from NLP
and image processing, using diffusion models coupled with Transformer blocks for
music generation (Li and Sung, 2023a; Min et al., 2023), also leading to tutorials
on diffusion models for music at ISMIR 20247. Therefore, as observed in recent

6https://opac.rism.info
7https://ismir2024.ismir.net/tutorials#page-section-2

https://opac.rism.info
https://ismir2024.ismir.net/tutorials#page-section-2
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publications and preprints (Figure 1.1), one current trend from recent MIR studies is
to adapt such diffusion models initially developed for images to process music, in
the same way as state-of-the-art NLP models have been adapted for symbolic music.

An interesting point is that these various applications of techniques from other
fields remain adaptations for music data. In contrast, mechanisms such as convo-
lutions for images or attention for sequential data were specifically conceived and
designed for their respective data types. This raises a long-term question for the
MIR community: is it possible to develop a mechanism tailored specifically to music,
taking into consideration its unique characteristics without relying on adaptations of
existing models?

9.2 Conclusion

From the work conducted and presented throughout this thesis, we aim to convey
two main takeaways beyond the practical contributions presented in Part II and
precise future directions outlined in Section 9.1.

Components of a MIR research study – Beyond the application of NLP tools for
MIR, we think that the development of a MIR research study, in the context of study
based on machine learning for symbolic music, should be guided by the three axes
outlined in the thesis (Part I). Accordingly, the following questions must be explicitly
addressed:

1. What task is being performed, and how precisely is it defined?

2. What representation is used to encode musical content, and what motivates
this choice?

3. What model is employed, and why is it suitable for the chosen task and repre-
sentation?

These questions then typically guide the choice of evaluation methods (subjective
user study, objective metrics, . . . ) and help define the musical scope regarding the
data involved. Ultimately, they can provide clear directions towards identifying and
highlighting the core contribution of a research study in MIR.

NLP methods as tools rather than main motivations – High-level parallels do
exist between music and natural language. However, when applied to the field of
computer science, in particular in the era of deep learning models, the set of existing
NLP methods seem to be more beneficial and judicious when considered as a toolbox,
rather than a motivation by itself.

Natural language and symbolic music still holds their specificities or technical
constraints, so that what is applicable in NLP is not necessary directly transferable to
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MIR, or may not be musically meaningful. For example, although musical harmony
is often compared to grammar in language (Section 2.2.2), our probing protocol
developed in Section 7.4.3 – which assumed that harmony information could be
found in a pre-trained model similarly to grammar in language models – does not
seem to confirm this parallel.

Instead, as MIR manipulates musical data, the main motivation guiding a MIR
study should be musical questions and NLP can provide technical approaches address
these issues. Such musical questions can arise from the considered task, as illustrated
in Chapter 8, where technical tools from NLP, such as tokenization or attention-based
models in our contribution, serve only as tools to address the presented musical
issues. Beyond NLP, this perspective of considering external fields as toolboxes
is typically what drives the MIR community to adopt diffusion models for music
processing as mentioned in future directions proposed in Section 9.1.5. Initially
developed for image processing, their performance in that domain largely explains
their growing popularity in MIR, rather than any direct parallel between music
and image which remains far from straightforward. Therefore, we believe that
adapting tools from other fields is judicious and should be continued, as long as their
application remains guided first and foremost by musical questions.

Ultimately, as illustrated throughout this thesis, the field of NLP still remains
a rich toolbox and offers a versatile framework of methods from which the MIR
community can draw inspiration to design new approaches suited to the particular
challenges of symbolic music analysis or generation.
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Appendix A

NLP tools for MIR: representations

The following tables illustrate Chapter 4: Representations of symbolic music as
sequences.

• Table A.1 gives an overview and descriptions of event-based tokenization based
on elementary tokens (Section 4.1.2.1).

• Table A.2 gives an overview and descriptions of event-based tokenization based
on composite tokens (Section 4.1.2.2).

• Table A.3 provides explanations of musical concepts that correspond to the
most common token types used in event-based tokenization strategies.

A companion Github repository with latest representations is available at https:
//github.com/dinhviettoanle/survey-music-nlp.
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Table A.1: Overview of event-based tokenization strategies based on elementary tokens. The “alphabet” describes the types of atomic
elements constituting the alphabet with their type. The “data” corresponds to the type of music considered by the indicated article. It
also specified whether the tokenization is score- or performance-based.

Tokenization Alphabet (Atomic elements) Grouping Vocab. size Data

ABC notation
(Sturm et al., 2016)

Text alphabet
Bar patching

(Wu et al., 2023)
N/A

Monophonic
(Score)

SMT-ABC (MuPT)
(Qu et al., 2025)

Text alphabet
BPE

(Qu et al., 2025)
N/A

Multi-track
(Score)

Interleaved ABC notation
(Wang et al., 2025)

Text alphabet
Bar patching

(Wang et al., 2025)
N/A

Multi-track
(Score)

MEI-based tags
(Acosta et al., 2022)

Text alphabet – 769
Monophonic
(Score)

Park et al. (2024)
(Mel2Word)

<Pitch-interval> (integer)
<Time-shift> (music time)

BPE
(Park et al., 2024)

30
Monophonic
(Score)

MIDI-like
(Oore et al., 2018)

<Note-ON> (MIDI value)
<Note-OFF> (MIDI value)
<Time-shift> (absolute time)
<Velocity> (integer)

BPE
(Kumar and Sarmento, 2023)
(Zhang et al., 2023)

Unigram
(Kumar and Sarmento, 2023)

388
Piano
(Performance)

LakhNES
(Donahue et al., 2019)

<NoteON-[trk]> (MIDI value)
<NoteOFF-[trk]> (MIDI value)
<Time-shift> (absolute time)

– 630
Multi-track
(Performance)

REMI
(Huang and Yang, 2020)

<Pitch> (MIDI value)
<Duration> (music time)
<Velocity> (integer)
<Chord> (class)
<Bar>
<Position> (music time)

BPE
(Fradet et al., 2023a)
(Kumar and Sarmento, 2023)
(Zhang et al., 2023)

Unigram
(Kumar and Sarmento, 2023)

332
Piano
(Score)

REMI+
(von Rütte et al., 2023)

REMI alphabet + features:
<Instrument> (class)
<Time-Signature> (class)
<Tempo> (integer)

– N/A
Multi-track
(Score)
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Table A.1: (Continued) Overview of event-based tokenization strategies based on elementary tokens.

Tokenization Alphabet (Atomic elements) Grouping Vocab. size Data

Lee et al. (2022)
(ComMU)

REMI alphabet + metadata:
<Instrument> (class)
<Key> (class)
<Time-Signature> (class)
<BPM> (integer)
<Min/Max-velocity> (integer)
<Nb-of-bars> (number)
<Pitch-range> (class)
<Rhythm> (class)

– 728
Multi-track
(Score)

Gover and Zewi (2022)
(MusIAC)

REMI alphabet + control info:
<Occupation> (class)
<Density> (class)
<Tensile-train> (class)
<Cloud diameter> (class)
<Polyphony> (class)

– 360
Multi-track
(Score)

Gover and Zewi (2022)

<Pitch> (MIDI value)
<Duration> (music time)
<Bar>
<Position> (music time)
<Hand> (class)

– N/A
Piano
(Score)

Wu and Yang (2023b)
(MuseMorphose)

<Durat.-[trk]> (music time)
<Pitch-[trk]> (MIDI value)
<Bar>
<Velocity-[trk]> (integer)
<Position> (music time)
<Tempo> (integer)

– 3440
Multi-track
(Score)

MultiTrack
(Ens and Pasquier, 2020)

<Start-piece>
<Start-track> / <End-track>
<Instrument> (class)
<Start-bar» / <End-bar>
<Start-fill> / <End-fill>
<Density-level> (integer)
<Note-ON/OFF> (MIDI value)
<Time-shift> (absolute time)

– 440
Multi-track
(Performance)
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Table A.1: (Continued) Overview of event-based tokenization strategies based on elementary tokens.

Tokenization Alphabet (Atomic elements) Grouping Vocab. size Data

MMR (SymphonyNet)
(Liu et al., 2022)

<Start-score> / <End-score>
<Start-bar> / <End-bar>
<Change-track>
<Position> (integer)
<Pitch> (MIDI value)
<Duration> (music time)
<Chord> (class)

BPE
(Liu et al., 2022)

N/A
Multi-track
(Score)

TSD
(Fradet et al., 2023a)

<Pitch> (MIDI value)
<Velocity> (integer)
<Rest> (absolute time)
<Duration> (absolute time)
<Time-shift> (absolute time)
<Program> (class)

BPE
(Fradet et al., 2023a)

249
Multi-track
(Performance)

Structured
(Hadjeres and Crestel, 2021)

<Pitch> (MIDI value)
<Velocity> (integer)
<Duration> (absolute time)
<Time-shift> (absolute time)

– 428
Piano
(Performance)

PerTok
(Lenz and Mani, 2024)

<Pitch> (MIDI value)
<Duration> (music time)
<Velocity> (integer)
<Bar>
<Time-shift> (absolute time)
<Micro-Shift> (absolute time)

– 196
Piano
(Performance)

Li et al. (2023c)

<Pitch-class> (class)
<Octave> (integer)
<Duration> (music time)
<Bar> (integer)
<Position> (music time)
<Velocity> (integer)

– N/A
Monophonic
(Score)
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Table A.1: (Continued) Overview of event-based tokenization strategies based on elementary tokens.

Tokenization Alphabet (Atomic elements) Grouping Vocab. size Data

Chen et al. (2020)

<Pitch> (MIDI value)
<Duration> (music time)
<Velocity> (integer)
<Bar> (integer)
<Position> (music time)
<Grooving> (class)
<String> (integer)
<Fret> (integer)
<Technique> (class)

– 231
Guitar
(Tablatures)

Sarmento et al. (2021)
(DadaGP)

<start>/<end>
<Wait> (integer)
<Instr:note> (MIDI value)
<Effect> (class)
<Drums:note> (MIDI value)
<String> (integer)
<Fret> (integer)

BPE
(Kumar and Sarmento, 2023)

Unigram
(Kumar and Sarmento, 2023)

2140
Guitar
(Tablatures)

Suzuki (2022)
(Score Transformer)

<Staff>
<Barline>
<Clef> (class)
<Key-signature> (class)
<Time-signature> (class)
<Voice>
<Rest>
<Pitch> (class)
<Duration> (class)
<Stem-direction> (class)
<Beams> (class)
<Tie> (class)

– N/A
Piano
(Score)
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Table A.2: Overview of event-based tokenization strategies based on composite tokens. The “musical features” column describes the
components of the vectors considered as tokens, in terms of musical attribute. The “embedded object” denotes the manner these musical
features are grouped together to form the super-token, including fixed-size vectors or based on event families.

Tokenization Musical features Super-token nature Data

Luo et al. (2020)
(MG-VAE)

<Pitch> (class)
<Interval> (number)
<Rhythm> (class)

Homogeneous Monophonic

Zhang (2020)
<Pitch> (integer)
<Velocity> (integer)
<Program> (class)

Homogeneous Multi-track

PiRhDy
(Liang et al., 2020a)

<Chroma> (class)
<Octave> (integer)
<Velocity> (integer)
<Inter-onset-interval> (music time)
<Note-state> (class)

Homogeneous Multi-track

Zixun et al. (2021)

<Pitch> (one-hot)
<Duration> (one-hot)
<Bar> (one-hot)
<Current-chord> (one-hot)
<Next-chord> (one-hot)

Homogeneous Lead sheet

Octuple
(Zeng et al., 2021)

<Time-signature> (class)
<Tempo> (integer)
<Bar> (integer)
<Position> (music time)
<Pitch> (MIDI value)
<Duration> (music time)
<Velocity> (integer)
<Instrument> (class)

Homogeneous Multi-track

Dong et al. (2023)
(MMT)

<Type> (class)
<Beat> (integer)
<Position> (music time)
<Pitch> (MIDI value)
<Duration> (music time)
<Instrument> (class)

Homogeneous Multi-track
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Table A.2: (Continued) Overview of event-based tokenization strategies based on composite tokens.

Tokenization Musical features Super-token nature Data

Dalmazzo et al. (2024)
(Chordinator)

<Chord-root> (class)
<Chord-nature> (class)
<Chord-extensions> (class)
<Slash-chord> (boolean)
<MIDI-array> (multi-hot)

Homogeneous Chord sequences

Wang and Xia (2021)
(MuseBERT)

<Onset> (music time)
<Pitch> (MIDI value)
<Duration> (music time)
+ factorized properties

Homogeneous Multi-track

MuMIDI
(Ren et al., 2020)

<Bar>
<Position> (music time)
<Tempo> (integer)
<Track> (class)
<Chord> (class)
<Pitch/Drum> (MIDI value)
<Velocity> (integer)
<Duration> (music time)

Family-based Multi-track

Compound Word
(Hsiao et al., 2021)

<Family> (class)
<Time-signature> (class)
<Bar> (integer)
<Beat> (music time)
<Chord> (class)
<Tempo> (integer)
<Pitch> (MIDI value)
<Duration> (music time)
<Velocity> (integer)

Family-based Piano

Di et al. (2021)

<Type> (class)
<Beat> (integer)
<Strenth> (class)
<Pitch> (MIDI value)
<Duration> (music time)
<Instrument> (integer)

Family-based Multi-track
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Table A.2: (Continued) Overview of event-based tokenization strategies based on composite tokens.

Tokenization Musical features Super-token nature Data

Makris et al. (2022)

Encoder input:
<Onset> (number)
<Duration> (music time or none)
<Group> (class)
<Type> (class)
<Value> (any - depends on type)

Decoder output:
<Onset> (number)
<Drums> (integer)

Family-based
Enc.: Multi-track
Dec.: Drums

Unsupervised Compound Word
(Tian et al., 2024)

<Family> (class)
<Time-signature> (class)
<Bar> (integer)
<Beat> (music time)
<Chord> (class)
<Tempo> (integer)
<Pitch> (MIDI value)
<Duration> (music time)
<Velocity> (integer)

Family-based
+ learning Piano

REMI_Track
(Luo et al., 2024)

<Instrument> (class)
<Position> (music time)
<Bar>

Learned grouping: <BPE>
and/or <Pitch> (MIDI value)
and/or <Velocity> (integer)
and/or <Duration> (music time)

Heterogeneous
+ learning Multi-track
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Table A.3: Musical concepts represented by common token types in event-based tokenization
strategies. The reported value examples only serve as illustration of the concept and does not
serve as an exhaustive list of possible values.

Token type Musical concept Value examples
On sheet music
(if applicable)

Pitch-related tokens

<Note-ON>
Event when a pitch is triggered
(e.g. a piano key is pressed).

0, . . . , 127
(MIDI values) —

<Note-OFF>
Event when a pitch is released
(e.g. a piano key is released).

0, . . . , 127
(MIDI values) —

<Pitch> “Highness” or “lowness” of a note. 0, . . . , 127
(MIDI values)

�� �

<Pitch-class>
Name of a note regardless of its
octave (e.g. C4 and C5 share the
same pitch class C).

C, C♯, . . . , B —

<Pitch-octave>
Octave of a note (e.g. C4 and C5
are one octave apart). 0, 1, . . . , 7 —

<Pitch-interval> Interval between two pitches. . . . , -1, 0, 1, . . .
�

�

<String>
On a guitar tablature, string to be
played. 0, 1, 2, 3, 4, 5

T
A
B

<Fret>
On a guitar tablature, position on
the <string> where the finger is
pressed.

0, 1, . . . , 24
T
A
B 3

Time structure-related tokens

<Bar>
Segment of time in a piece defined
by a number of beats. It can also
be called a measure.

–

<Position>
<Beat>

Beat (or sub-beat) position within
a bar.

0, 1, . . . , 16

(for a ˇ “) quantization)
—

<Duration> Length of time a note lasts.
0, 1, . . . , 16

(for a ˇ “) quantization)
or in milliseconds

�
���

<Time-shift> Waiting time between two events. In milliseconds —
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Table A.3: (Continued) Musical concepts represented by common token types in event-based
tokenization strategies.

Token type Musical concept Value examples
On sheet music
(if applicable)

Instrument-related tokens

<Track>
<Instrument>
<Program>

Playing instrument. It often relies
on the standard list of MIDI pro-
grams.

Piano, Oboe, . . .

Violin

Cello

�

�

Performance-related tokens

<Velocity>

Speed with which a key is pressed.
It is often used as a proxy to repre-
sent the musical dynamic (i.e. how
loud or soft a note sounds).

0, . . . , 127 f p

Meta features

<Time-signature>
Information about how beats are
organized in each bar. 4/4, 6/8, . . .

4
4

�

<Tempo> Speed of the music. 60, 120, . . . � = 60

<Chord>
Information describing the har-
monic relation between multiple
notes.

C:M, C:m, C:7, . . . —

<Key>

Information about the note around
which the piece is centered. It is
usually derived from the key sig-
nature (i.e. the sharps (♯) or flats (♭)
at the start of a staff).

C Maj, D Maj, . . .

���







Appendix B

NLP tools for MIR: models

The following tables illustrate Chapter 5: NLP-based models for symbolic music
processing.

• Table B.1 gives an overview and descriptions of recurrent models for symbolic
music processing (Section 5.2.2).

• Table B.2 gives an overview and descriptions of Transformer-based models
trained as end-to-end models for symbolic music processing (Section 5.3).

• Table B.3 gives an overview and descriptions of Transformer-based models
trained as pre-trained and fine-tuned models for symbolic music processing
(Section 5.3).

A companion Github repository with latest models is available at https://github.
com/dinhviettoanle/survey-music-nlp.

209

https://github.com/dinhviettoanle/survey-music-nlp
https://github.com/dinhviettoanle/survey-music-nlp


210
A
P
P
E
N
D
IX

B
.
N
L
P
T
O
O
L
S
FO

R
M
IR

:M
O
D
E
L
S

Table B.1: Recurrent models applied to symbolic music. Models are grouped based on their recurrent unit type (RNN, LSTM, GRU).
Precisions indicated in the Representation column depict the specific adaptations brought to an initial tokenization strategy. The last
column indicates if the code has been publicly released.

Model Architecture Data Representation Tasks Code

Recurrent Neural Network (RNN)

RNN-RBM
(Boulanger-Lewandowski et al., 2012)

RBM + RNN Multi-track
Time-slice
(piano roll)

Free generation ✗

RNN-DBN
(Goel et al., 2014)

RBM + DBN + RNN Multi-track
Time-slice
(piano roll)

Free generation ✗

Long-Short Term Memory (LSTM)

Folk-RNN
(Sturm et al., 2016)

LSTM Monophonic ABC notation Free generation ✓

C-RNN-GAN
(Mogren, 2016)

GAN + Bi-LSTM Multi-track

Pitch + duration
+ time-shift
+ velocity
(composite tokens)

Free generation ✓

Song from Pi
(Chu et al., 2016)

Hierarchical + LSTM Multi-track
Custom features
(composite tokens)

Free generation
(melody, chord,
drum generation)

✗

Melody/Attention-RNN
(Waite, 2016)

LSTM (+ Attention) Monophonic
Note-ON /
Note-OFF

Priming ✓

DeepBach
(Hadjeres et al., 2017)

Bi-LSTM 4-part chorales Time-slice-based
Harmonization
Free generation ✓

Anticipation-RNN
(Hadjeres and Nielsen, 2017)

LSTM Monophonic
Pitch + duration
(time-slice-based)

Infilling ✓

JamBot
(Brunner et al., 2017)

LSTM Multi-track
Time-slice
(piano roll)

Chord generation
Chord-conditioned gen. ✓

https://github.com/IraKorshunova/folk-rnn
https://github.com/olofmogren/c-rnn-gan
https://github.com/magenta/magenta/tree/main/magenta/models/melody_rnn
https://github.com/Ghadjeres/DeepBach
https://github.com/Ghadjeres/Anticipation-RNN
https://github.com/brunnergino/JamBot


A
P
P
E
N
D
IX

B
.
N
L
P
T
O
O
L
S
FO

R
M
IR

:M
O
D
E
L
S

211
Table B.1: (Continued) Recurrent models applied to symbolic music.

Model Architecture Data Representation Tasks Code

Note-RNN / RL Tuner
(Jaques et al., 2017)

LSTM (+ RL) Monophonic
Note-ON /
Note-OFF

Free generation ✓

PerformanceRNN
(Oore et al., 2018)

LSTM Piano MIDI-like Expressive perform. gen. ✓

Chen and Su (2018) Bi-LSTM Piano
Time-slice
(piano roll)

Roman Numeral Analysis ✓

StructureNet
(Medeot et al., 2018)

LSTM Monophonic
Custom features
(composite tokens)

Free generation ✗

Music-VAE
(Roberts et al., 2018)

VAE + LSTM Monophonic MIDI-like
Samples interpolation
Free generation ✓

JazzGAN
(Trieu and Keller, 2018)

GAN + LSTM Lead sheet
Pitch + duration
+ chord
(event-based)

Chord-conditioned gen. ✗

DeepJ
(Mao et al., 2018)

Biaxial LSTM Piano
Time-slice
(piano roll)

Free generation
Style embedding analysis ✓

Chen et al. (2019) Bi-LSTM Lead sheet
Time-slice
(piano roll)

Chord-conditioned gen. ✗

Makris et al. (2019)
LSTM (Drums)
Feed-forward (Context)

Multi-track

Drums:
(event-based)

Context:
(time-slice)

Drums accompaniment
generation ✗

MahlerNet
(Lousseief and Sturm, 2019)

VAE + Bi-LSTM Multi-track Event-based Samples interpolation ✓

GrooVAE
(Gillick et al., 2019)

VAE + Bi-LSTM Drums
Time-slice
(drumroll)

Drum Infilling
Tap2Drum
Humanization

✓

https://github.com/magenta/magenta/tree/main/magenta/models/rl_tuner
https://github.com/magenta/magenta/tree/main/magenta/models/performance_rnn
https://github.com/Tsung-Ping/functional-harmony
https://github.com/magenta/magenta/tree/main/magenta/models/music_vae
https://github.com/calclavia/DeepJ
https://github.com/fast-reflexes/MahlerNet
https://github.com/magenta/magenta/tree/main/magenta/models/music_vae
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Table B.1: (Continued) Recurrent models applied to symbolic music.

Model Architecture Data Representation Tasks Code

Wu et al. (2020a) Hierarchical + LSTM Monophonic
Note-ON /
Note-OFF

Structure-conditioned gen. ✗

VirtuosoNet
(Jeong et al., 2019a)

Hierarchical + VAE
+ Bi-LSTM + Attention Piano

Custom features
(composite tokens)

Expressive perform. gen. ✓

Amadeus
(Kumar and Ravindran, 2019)

LSTM + RL Piano
Pitch + duration
(event-based)

Free generation ✗

MuseAE
(Valenti et al., 2020)

Adversarial Autoencoder
+ LSTM Multi-track

Time-slice
(piano roll)

Samples interpolation
Embedding analysis ✓

Jin et al. (2020) LSTM + RL Multi-track
Time-slice
(piano roll)

Free generation ✗

GGA-MG
(Farzaneh and Toroghi, 2020)

Bi-LSTM + GA Monophonic ABC Notation Free generation ✓

Yu et al. (2021) GAN + LSTM Monophonic
Pitch + duration
(event-based)

Lyrics-conditioned gen. ✓

CM-HRNN
(Zixun et al., 2021)

Hierarchical + LSTM Lead sheet
Pitch + duration
+ chord + bar
(composite tokens)

Chord-conditioned gen. ✓

Keerti et al. (2022) Bi-LSTM + Attention Monophonic
Pitch + duration
(event-based)

Sequence reconstruction ✗

LStoM
(Kosta et al., 2022)

Bi-LSTM Piano
Custom features
(event-based)

Melody extraction ✓

Turker et al. (2022) VAE + LSTM Piano
Note-ON /
Note-OFF

Sequence reconstruction
Latent space analysis ✗

Gated Recurrent Unit (GRU)

MIDI-VAE
(Brunner et al., 2018)

VAE + GRU Multi-track
Time-slice
(piano roll)

Style transfer
Samples interpolation ✓

https://github.com/jdasam/virtuosoNet
https://github.com/Andrea-V/MusAE
https://github.com/asigalov61/Amazon-Deep-Composer
https://github.com/yy1lab/Lyrics-Conditioned-Neural-Melody-Generation
https://github.com/guozixunnicolas/CM-HRNN
https://github.com/bytedance/midi_melody_extraction
https://github.com/brunnergino/MIDI-VAE
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Table B.1: (Continued) Recurrent models applied to symbolic music.

Model Architecture Data Representation Tasks Code

XiaoIce Band
(Zhu et al., 2018)

GRU + Attention Multi-track
Pitch + duration
+ chord
(event-based)

Chord-conditioned gen.
Arrangement generation ✗

Songwriter
(Bao et al., 2019)

GRU + Attention Monophonic
Pitch + duration
(event-based)

Lyrics-conditioned gen. ✗

Yang et al. (2019a) VAE + bi-GRU Lead sheet

Time-slice
(piano roll)

+ chords
(chromagram)

Melody contour /
chord-conditioned gen. ✓

BUTTER
(Zhang et al., 2020)

VAE + GRU Monophonic
Time-slice
(piano roll)

Text-based query
Music captioning
Text-conditioned gen.

✓

Kong et al. (2020) Bi-GRU Piano
Time-slice
(piano roll)

Composer classification ✓

MG-VAE
(Luo et al., 2020)

VAE + GRU Monophonic
Pitch + interval
+ duration
(event-based)

Free generation ✗

PianoTree-VAE
(Wang et al., 2020c)

VAE + bi-GRU Piano / Multi-track
Time-slice
(piano roll)
MIDI-like

Samples interpolation
Free generation
Embedding analysis

✓

Su et al. (2022) Bi-GRU + CNN + Attention Monophonic
Pitch + duration
(time-slice-based)

Free generation ✗

https://github.com/buggyyang/Deep-Music-Analogy-Demos
https://github.com/ldzhangyx/BUTTER
https://github.com/bytedance/GiantMIDI-Piano
https://github.com/ZZWaang/PianoTree-VAE
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Table B.2: End-to-end Transformer-based models applied to symbolic music: such models are directly trained on specific tasks. Models
are grouped by architecture. Details indicated in the Representation column depict the specific adaptations brought to an initial
tokenization strategy. The last column indicates the code availability.

Model
Base model
(+ MIR mechanism) Data Representation Tasks Code

Encoder-only architecture

MTBert
(Zhao et al., 2023b)

BERT (no pre-training) 4-part chorales
Interval + duration
(event-based)

Fugue form analysis ✗

Decoder-only architecture

Music Transformer
(Huang et al., 2019)

Tf. decoder
(+ Relative attention) Piano / Choral MIDI-like

Priming
Harmonization ✓

Chen et al. (2020) Transformer-XL Guitar tabs
REMI-derived
(Tablatures)

Free tabs gen. ✗

Pop Music Transformer
(Huang and Yang, 2020)

Transformer-XL Piano REMI
Free generation
Priming ✓

Jazz Transformer
(Wu and Yang, 2020)

Transformer-XL Lead sheet
REMI-derived
(Chords)

Free generation ✓

PopMAG
(Ren et al., 2020)

Transformer-XL Multi-track MuMIDI Accompaniment gen. ✗

Wu et al. (2020b) Transformer-XL Piano
MIDI-like-derived
(composite tokens)

Free generation ✗

Di et al. (2021) Tf. decoder Multi-track
CPWord-derived
(Rhythm family)

Video-to-music ✓

Chang et al. (2021)
XLNet
(+ Relative bar enc.) Piano Compound Word Infilling ✓

Compound Word Tf.
(Hsiao et al., 2021)

Linear Tf. decoder Piano Compound Word
Free generation
Priming ✓

https://github.com/jason9693/musictransformer-tensorflow2.0
https://github.com/YatingMusic/remi
https://github.com/slSeanWU/jazz_transformer
https://github.com/wzk1015/video-bgm-gen.
https://github.com/reichang182/variable-length-piano-infilling
https://github.com/YatingMusic/compound-word-transformer
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Table B.2: (Continued) End-to-end Transformer-based models applied to symbolic music.

Model
Base model
(+ MIR mechanism) Data Representation Tasks Code

Sarmento et al. (2021) Transformer-XL
Guitar tabs
+ multi-track DadaGP Metadata-conditioned gen. ✓

Sulun et al. (2022) Music Transformer Multi-track MIDI-like Emotion-conditioned gen. ✓

ComMU
(Lee et al., 2022)

Transformer-XL Multi-track REMI + metadata
Metadata-conditioned gen.
Multi-track combination ✓

SymphonyNet
(Liu et al., 2022)

Linear Tf.
(+ 3-D positional encoding) Orchestral MMR

Free generation / Priming
Chord-conditioned gen. ✓

Li et al. (2023c) Transformer-XL Lead sheet
REMI-derived
(pitch class)

Free generation ✗

Multitrack Music Tf.
(Dong et al., 2023)

Tf. decoder Orchestral MMT
Free generation / Priming
Instr.-conditioned gen. ✓

GTR-CTRL
(Sarmento et al., 2023a)

Transformer-XL
Guitar tabs
+ multi-track DadaGP

Instr.-conditioned gen.
Genre-conditioned gen. ✗

ShredGP
(Sarmento et al., 2023b)

Transformer-XL Guitar tabs DadaGP Style-conditioned gen. ✗

Choir Transformer
(Zhou et al., 2023)

Tf. decoder
(+ Relative attention) 4-part chorales

Chord + pitch
(event-based)

Harmonization ✓

Guo et al. (2023)
Tf. encoder
(+ Fundamental music embd.
+ RIPO attention)

Monophonic FME Priming ✓

Compose & Embellish
(Wu and Yang, 2023a)

Tf. decoder Piano REMI
Lead sheet priming
Accomp refinement ✓

RHEPP-Transformer
(Tang et al., 2023)

Tf. decoder Piano Octuple Expressive performance gen. ✓

Angioni et al. (2023) Tf. encoder Multi-track TSD-like Style classification ✓

https://github.com/dada-bots/dadaGP
https://github.com/serkansulun/midi-emotion
https://github.com/POZAlabs/ComMU-code
https://github.com/symphonynet/SymphonyNet
https://github.com/salu133445/mmt
https://github.com/Zjy0401/choir-transformer
https://github.com/guozixunnicolas/fundamentalmusicembedding
https://github.com/slSeanWU/Compose_and_Embellish
https://github.com/tangjjbetsy/RHEPP-Transformer
https://zenodo.org/records/7786756
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Table B.2: (Continued) End-to-end Transformer-based models applied to symbolic music.

Model
Base model
(+ MIR mechanism) Data Representation Tasks Code

Chordinator
(Dalmazzo et al., 2024)

minGPT (no pre-training) Chords
Custom chord features
(+ MIDI array)

Chord generation ✓

Nested Music Tf.
(Ryu et al., 2024)

Tf. decoder
(+ Auto-reg. CPWord decoding) Multi-track Compound Word Free generation ✓

Encoder-decoder architecture

Transformer-VAE
(Jiang et al., 2020b)

Tf. encoder-decoder Monophonic
Pitch + duration
(time-slice-based)

Priming ✗

Harmony Transformer
(Chen and Su, 2021)

Tf. encoder-decoder Piano Piano roll time-slices Roman Numeral Analysis ✓

Makris et al. (2021) Tf. encoder-decoder Lead sheet
Enc.: bar features
Dec.: chord + pitch + dur.

Emotion-conditioned gen. ✓

Liutkus et al. (2021)
Performer
(+ Stochastic positional enc.) Multi-track

REMI / MIDI-like-derived
(multi-track)

Free generation
Groove continuation ✓

Gover and Zewi (2022) BART Piano
REMI-derived
(hands tokens)

Arrangement generation ✗

Museformer
(Yu et al., 2022)

Tf. encoder-decoder
(+ Fine-/coarse-grained attn.
+ Bar selection)

Multi-track REMI Free generation ✓

Theme Transformer
(Shih et al., 2023)

Tf. encoder-decoder
(+ Theme-aligned pos. enc.) Multi-track

REMI-derived
(theme tokens)

Theme-conditioned gen. ✓

FIGARO
(von Rütte et al., 2023)

Tf. encoder-decoder Multi-track REMI+ Controllable generation ✓

MuseMorphose
(Wu and Yang, 2023b)

Tf. enc + Transformer-XL
(+ In-attention conditioning) Piano

REMI-derived
(multi-track)

Style transfer
Controllable generation ✓

https://github.com/Dazzid/theChordinator
https://github.com/JudeJiwoo/nmt
https://github.com/Tsung-Ping/Harmony-Transformer
https://github.com/melkor169/LeadSheetGen_Valence
https://github.com/aliutkus/spe
https://github.com/microsoft/muzic/tree/main/museformer
https://github.com/atosystem/ThemeTransformer
https://github.com/dvruette/figaro
https://github.com/YatingMusic/MuseMorphose
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Table B.2: (Continued) End-to-end Transformer-based models applied to symbolic music.

Model
Base model
(+ MIR mechanism) Data Representation Tasks Code

Zhao et al. (2024b)
Tf. encoder-decoder
(+ Instrument embedding) Multi-track Piano roll time-slices Accompaniment gen. ✓

TeleMelody
(Ju et al., 2022)

Tf. encoder-decoder Monophonic
Bar + position
+ pitch + duration

Lyrics-to-melody ✓

MuseCoco
(Lu et al., 2023)

Text2Attr.: BERT
Attr2Music: Linear Tf. Multi-track REMI Text-to-MIDI ✓

Multi-view MidiVAE
(Lin et al., 2024a)

Tf. encoder-decoder Multi-track Octuple Free generation ✗

MelodyT5
(Wu et al., 2024)

T5 Monophonic ABC notation
Melody generation
Melody harmonization
Melody segmentation

✓

Composer’s Assistant 2
(Malandro, 2024)

T5 Multi-track
REMI+-derived
(text format)

Infilling
Controllable generation ✗

BandControlNet
(Luo et al., 2024)

Tf. encoder-decoder
(+ Structure enhanced
self-attention)

Multi-track REMI_Track Controllable generation ✓

Text2midi
(Bhandari et al., 2025)

FlanT5 + Tf. decoder Multi-track REMI+ Text-to-MIDI ✓

Model combinations

Zhang (2020)
Generator: Tf. decoder
Discriminator: Tf. encoder Multi-track

MIDI-like-derived
(composite tokens)

Free generation ✗

Transformer-GAN
(Muhamed et al., 2021)

Generator: Tf.-XL
Discriminator: BERT Piano MIDI-like Free generation ✓

Dai et al. (2021)
Encoder: Tf. encoder
Decoder: LSTM Piano

Pitch + rhythm
(event-based)

Structure-conditioned gen.
Chord conditioned gen. ✗

https://github.com/zhaojw1998/AccoMontage-3
https://github.com/microsoft/muzic/tree/main/telemelody
https://github.com/microsoft/muzic/tree/main/musecoco
https://github.com/sanderwood/melodyt5
https://github.com/Chinglohsiu/BandControlNet
https://github.com/AMAAI-Lab/Text2mid
https://github.com/amazon-science/transformer-gan
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Table B.2: (Continued) End-to-end Transformer-based models applied to symbolic music.

Model
Base model
(+ MIR mechanism) Data Representation Tasks Code

Choi et al. (2021)
Chord enc.: Bi-LSTM
Rhythm dec.: Tf. decoder
Pitch dec.: Tf. decoder

Lead sheet
Pitch + rhythm + chord
(time-slice-based)

Chord-conditioned gen. ✓

Bar Transformer
(Qin et al., 2022)

Bi-LSTM -
Tf. decoder Lead sheet

Bar + position
+ melody + chord
(time-slice-based)

Free generation ✗

Makris et al. (2022)
Bi-LSTM -
Tf. decoder

Multi-track CPWord-derived Drums accomp. generation ✓

Neves et al. (2022)
Generator: Linear Tf.
Discriminator: Linear Tf.
(+ Local prediction map)

Piano REMI Emotion-conditioned gen. ✓

Q&A
(Zhao et al., 2023c)

PianoTree-VAE
Tf. decoder
(+ Instrument embedding)

Multi-track Piano roll time-slices Accompaniment gen. ✓

Duan et al. (2023)
Generator: Tf. encoder
Discriminator: LSTM Monophonic

Pitch + duration + rest
(event-based)

Lyrics-to-melody ✗

Video2Music
(Kang et al., 2023)

GRU + Tf. encoder-decoder Multi-track MIDI-like Video-to-music ✓

https://github.com/ckycky3/CMT-pytorch
https://github.com/melkor169/CP_Drums_gen.
https://github.com/pneves1051/transformers_sentiment
https://github.com/zhaojw1998/Query-and-reArrange
https://github.com/AMAAI-Lab/Video2Music
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Table B.3: Pre-trained Transformer-based models applied to symbolic music: such models are pre-trained and then fine-tuned on
downstream tasks.

Model
Base model
(+ MIR mechanism) Data Representation Tasks Code

Encoder-only architecture

MuseBERT
(Wang and Xia, 2021)

BERT
(+ Generalized relative pos. enc.) Piano MuseBERT repr.

Controllable generation
Chord analysis
Accomp. refinement

✓

MidiBERT-Piano
(Chou et al., 2024)

BERT Piano
REMI
Compound Word

Melody extraction
Velocity prediction
Composer classification
Emotion classification

✓

MusicBERT
(Zeng et al., 2021)

RoBERTa
(+ Bar-level masking) Multi-track* Octuple

Melody completion
Accompiment suggest.
Genre classification
Style classification

✓

DBTMPE
(Qiu et al., 2021)

Tf. encoder Multi-track
Pitch combinations
+ duration (event-based)

Style classification ✗

MRBERT
(Li and Sung, 2023b)

BERT
(+ Melody/rhythm cross attention) Lead sheet

Pitch + duration
(event-based)

Free generation
Infilling
Chord analysis

✗

SoloGPBERT
(Sarmento et al., 2023b)

BERT Guitar tabs DadaGP Guitar player classif. ✗

Shen et al. (2023)
MidiBERT-Piano
(+ Quad-attribute masking
+ Key prediction pre-training tasks)

Multi-track CPWord simplified

Melody extraction
Velocity prediction
Composer classification
Emotion classification

✗

https://github.com/ZZWaang/musebert
https://github.com/wazenmai/MIDI-BERT/
https://github.com/microsoft/muzic/tree/main/musicbert
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Table B.3: (Continued) Pre-trained Transformer-based models applied to symbolic music.

Model
Base model
(+ MIR mechanism) Data Representation Tasks Code

CLaMP
(Wu et al., 2023)

Text enc.: DistilRoBERTa
Music enc.: BERT Lead sheet ABC notation-derived

Text-based semantic search
Music recommandation
Genre classification
Emotion classification
Composer classification

✓

Adversarial MidiBERT
(Zhao, 2024)

BERT
(+ Adversarial pre-training) Piano Octuple

Melody extraction
Velocity prediction
Composer classification
Emotion classification

✓

Decoder-only architecture

LakhNES
(Donahue et al., 2019)

Transformer-XL Multi-track MIDI-like Free generation ✓

Musenet
(Payne, 2019)

GPT-2
(+ Timing embedding
+ Structural embedding)

Multi-track* MIDI-like Priming ✗

MMM
(Ens and Pasquier, 2020)

GPT-2 Multi-track MultiTrack repr.

Free generation
Inpainting
Priming
Controllable generation

✓

Angioni et al. (2023) GPT-2 Multi-track TSD-like Priming ✓

Zhang and Callison-Burch
(2023)

GPT-3 Drums
Drumroll
time-slices

Priming ✓

ChatMusician
(Yuan et al., 2024)

Llama-2 Monophonic ABC Notation Text-to-ABC ✓

ComposerX
(Deng et al., 2024a)

GPT-4 Monophonic ABC notation Text-to-ABC ✓

https://github.com/microsoft/muzic/tree/main/clamp
https://github.com/RS2002/Adversarial-MidiBERT
https://github.com/chrisdonahue/LakhNES
https://github.com/AI-Guru/MMM-JSB
https://zenodo.org/records/7786756
https://github.com/zharry29/drums-with-llm
https://github.com/hf-lin/ChatMusician
https://github.com/lllindsey0615/ComposerX
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Table B.3: (Continued) Pre-trained Transformer-based models applied to symbolic music.

Model
Base model
(+ MIR mechanism) Data Representation Tasks Code

MuseBarControl
(Shu et al., 2024)

Linear Tf.
(+ Auxiliary task pre-adaptation) Piano REMI

Controllable generation
Chord-conditioned gen. ✗

MIDI-GPT
(Pasquier et al., 2025)

GPT-2 Multi-Track Multi-Track repr.

Free generation
Infilling
Priming
Controllable generation

✓

NotaGen
(Wang et al., 2025)

GPT-2
(+ CLaMP-DPO) Multi-track ABC notation

Free generation
Style-conditioned gen. ✓

Encoder-decoder architecture

MusIAC
(Guo et al., 2022)

Tf. encoder-decoder Multi-track REMI
Infilling
Controllable generation ✓

Li and Sung (2023c) Tf. encoder-decoder Lead sheet
Pitch + duration
(event-based)

Harmony analysis
Chord generation ✗

Fu et al. (2023) MusicBERT + Music Tf. Multi-track Octuple

Melody completion
Accompaniment suggest.
Melody extraction
Emotion classification

✗

Multi-MMLG
(Zhao et al., 2023a)

XLNet + MuseBERT Multi-track CPWord-derived Melody extraction ✗

PianoBART
(Liang et al., 2024)

BART
(+ Multi-level object masking) Piano Octuple

Priming
Velocity prediction
Melody extraction
Composer classification
Emotion classification

✓

https://github.com/Metacreation-Lab/MIDI-GPT
https://github.com/ElectricAlexis/NotaGen
https://github.com/ruiguo-bio/MusIAC
https://github.com/RS2002/PianoBart
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Table B.3: (Continued) Pre-trained Transformer-based models applied to symbolic music.

Model
Base model
(+ MIR mechanism) Data Representation Tasks Code

Comparative studies

Ferreira et al. (2023)
GRU, Performance-RNN
GPT-2, Music Tf., MuseNet

(Tf. decoders)
Piano MIDI-like Free generation ✓

Wu and Sun (2023)
BERT (Tf. encoder)
GPT-2 (Tf. decoder)
BART (Tf. enc.-dec.)

Lead sheet ABC notation Text-to-ABC ✓

Tf.: Transformer | Enc.: Encoder | Dec.: Decoder | Pos. enc.: Positional Encoding | (*) These datasets are not publicly available.

https://github.com/p-ferreira/generating-music-with-data
https://github.com/sander-wood/text-to-music






Appendix C

Layer-wise relevance propagation for
multi-hot time-slice representation

In Section 7.4.3, we aim at applying Layer-wise Relevance Propagation (LRP) to a
masked language model in order to evaluate if harmonic analysis characteristics are
encoded through attention head relevance. Though, the input format of the model
relies on a time-slice representation, through multi-hot vectors. Mathematically, the
application of LRP is not direct because it must be back-propagated from a single
logit value from the output.

In the following, we will consider this set of three multi-hot vectors outputs as a
single multi-hot vector, for simplicity. To this end, instead of back-propagating LRP
from each single value of this multi-hot vector, we consider summing the values of
this multi-hot vector from which LRP is back-propagated. We show that these two
processes are equivalent (i.e. we want that the relevance of each single value of the
multi-hot vector corresponds to its logit). In practice, such LRP back-propagation
from 𝑆 allows for a single LRP back-propagation instead of performing 𝑛 independent
back-propagations.

𝑎𝐿1

𝑎𝐿𝑖

𝑎𝐿𝑛

𝑆+

(𝐿 + 1)

...

...

1

1

1

(
= 𝑅𝐿+1

)

Multi-hot (layer 𝐿)

Figure C.1: LRP for multi-hot representation. The back-propagation is performed from
the sum of all the values from the final multi-hot output vector, and is equivalent to back-
propagate from each single value of the multi-ht vector.
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Proof. Following Figure C.1, we consider a model with 𝐿 layers, with an output layer
being a multi-hot vector

[
𝑎𝐿1 , . . . , 𝑎

𝐿
𝑛

] ∈ R𝑛. We define 𝑆 as the sum of these values:

𝑆 =

𝑛∑︁
𝑗=1

𝑎𝐿𝑗 (C.1)

From a model perspective, this sum can be considered as an (𝐿 + 1)th layer with only
one output and sums its inputs. In terms of weights, this means:

∀𝑘 ∈ {1, . . . , 𝑛} , 𝜔(𝐿,𝐿+1)𝑘 = 1 (C.2)

Considering 𝑆 as being the value from which LRP is back-propagated means:

𝑅𝐿+1 = 𝑆 (C.3)

We want to derive the relevance 𝑅𝐿𝑖 of the 𝑖th element of the multi-hot vector.
Following Equation (7.1), it is defined by:

𝑅𝐿𝑖 =
∑︁
𝑘

𝑎𝐿𝑖 𝜔
(𝐿,𝐿+1)
𝑖𝑘∑

𝑗
𝑎𝐿𝑗 𝜔

(𝐿,𝐿+1)
𝑗 𝑘

𝑅𝐿+1𝑘

=
𝑎𝐿𝑖 𝜔

(𝐿,𝐿+1)
𝑖∑

𝑗
𝑎𝐿𝑗 𝜔

(𝐿,𝐿+1)
𝑗

𝑅𝐿+1 ⊲ the 𝐿 + 1 layer has only one output.

=
𝑎𝐿𝑖 𝜔

(𝐿,𝐿+1)
𝑖∑

𝑗
𝑎𝐿𝑗 𝜔

(𝐿,𝐿+1)
𝑗

𝑆 ⊲ using Equation (C.3).

=
𝑎𝐿𝑖∑
𝑗
𝑎𝐿𝑗
𝑆 ⊲ using Equation (C.2).

𝑅𝐿𝑖 = 𝑎𝐿𝑖 ⊲ using Equation (C.1).

Back-propagating LRP from 𝑆 is therefore equivalent to back-propagating from
each single element of the multi-hot vector.

□







Appendix D

Résumé étendu en français

Le domaine du Traitement automatique du langage naturel (TALN) a connu des
avancées majeures durant ces dernières années, notamment grâce à la popularité des
applications basées sur des grand modèles de langage. Cela se traduit notamment par
des applications grand public tels que ChatGPT. Motivé par ces avancées et par les
nombreux liens existants en musique et langage naturel, le domaine de l’extraction
automatique d’informatique musicale, ou Music Information Retrieval (MIR), a peu
à peu consacré une part croissante de ses sujets de recherche sur l’utilisation de
ces modèles. Ils sont notamment utilisés en analyse ou génération automatique de
musique, aussi bien dans le domaine audio que dans le domaine symbolique.

Dans cette thèse, nous nous intéressons au contenu musical représenté sous
forme symbolique, par exemple, sous forme de partition. Dans une certaine mesure,
celle-ci est comparable au texte, mais garde également ses spécificités. Cela soulève
alors la question de l’adaptation de ces outils de TALN pour traiter des données
musicales. Dans cette thèse, nous détaillons les aspects dans lesquels les méthodes
de TALN peuvent être appliquées en musique: tâches, représentations séquentielles
et modèles, et nous présentons alors des contributions techniques dans chacun de
ces trois aspects. Cette thèse soutient néanmoins que, malgré les similitudes entre
musique et langage, les outils du TALN doivent avant tout servir d’inspiration pour
la recherche en musique symbolique. Celle-ci doit être guidée en priorité par des
problématiques musicales, plutôt que par une application directe ou systématique
des méthodes issues du TALN.

Chapitre 2 – Des parallèles entre musique et langage naturel

Musique et langage naturel sont souvent considérés comme des moyens de com-
munication, mais avec différentes visées. Le langage a pour but de transmettre des
idées et des concepts, alors que la musique est plus souvent associée à l’affect et
aux émotions. Alors que le langage peut également transmettre des émotions, la
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question du sens de la musique demeure un sujet de débat récurrent et de longue date.
Leur déclinaison sous une forme auditive et écrite peuvent également engendrer
des réactions cognitives similaires, notamment en termes d’attente grammaticale ou
sémantique dans le langage, ou d’attente liée à l’harmonie en musique.

En considérant musique et texte comme des données, ceux-ci partagent également
des spécificités. Ils sont notamment tous les deux basés sur des représentations
hiérarchiques, avec plusieurs niveaux de segmentation (par exemple, lettres, mots,
paragraphes en texte ; note, motif, phrase musicale en musique). En revanche,
la dimension temporelle de la musique, la polyphonie et le polymorphisme d’un
symbole musical demeurent spécifiques à ce domaine et ne trouvent pas d’équivalent
direct en texte. Cette hiérarchie se déploie également à haut niveau, avec notamment
des règles grammaticales ou des structures textuelles, de la même manière que la
musique tonale est régie par les règles d’harmonie et des formes musicales, tels que
la fugue ou la forme sonate.

Partie I : Une vue d’ensemble des méthodes de traitement
du langage naturel en informatique musicale

La première contribution de cette thèse est une présentation organisée des méthodes
de TALN pour le traitement de représentations symboliques de la musique. Celle-ci
est organisée autour de trois axes : tâches, représentations séquentielles et modèles.

Chapitre 3 – Tâches en TALN et MIR : similarités et spécificités

Les similarités entre ces deux domaines se retrouvent dans leurs tâches. En suivant les
paradigmes d’apprentissage sur des données qui sont aujourd’hui les plus répandues,
ces tâches peuvent s’organiser autour de données annotées (i.e. où chaque partition
ou texte d’un corpus est annoté par des labels), ou non-annotées (i.e. des partitions ou
des textes bruts).

Les tâches s’appuyant sur des données annotées comprennent notamment des
tâches opérant sur des séquences entières de musique ou de texte. On peut notam-
ment aisément tracer des parallèles entre des tâches de classification d’auteur ou
de compositeur, ou de reconnaissance de sentiment ou d’émotion. En revanche, les
tâches qui opèrent au niveau du jeton (token) – par exemple un mot ou une note –
font ressortir les différences entre texte et musique. Par exemple, une tâche d’analyse
harmonique ne trouve pas d’équivalent en texte, au même titre que la labellisation
des classes grammaticale de mot en texte.

Des tâches utilisant des corpus de données non-annotées comprennent notam-
ment des tâches de clustering ou de segmentation de phrases textuelles / musicales.
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Aujourd’hui, les tâches les plus dominantes en TALN et MIR sont des tâches por-
tant sur la génération automatique de contenu textuel ou musical. La génération de
musique ou de texte peuvent se rapporter à des contextes similaires, tels que la
génération à partir d’une instruction générative (prompt) ou le transfert de style. Des
tâches restent particulières à chacun des domaines tels que la génération d’accom-
pagnement en musique – qui suppose l’existence de la notion d’harmonie et/ou de
rythme – ou le résumé de texte – qui présume de la notion de sémantique.

Chapitre 4 – Représentations séquentielles de la musique et du texte

Alors que le texte peut se représenter de manière séquentielle de manière relati-
vement naturelle, une telle représentation séquentielle pour la musique est moins
directe. Par exemple, la notion de polyphonie, induite par la simultanéité de certaines
notes, viendrait directement à l’encontre de l’unidimensionnalité d’une séquence.
Pourtant, de multiples tokenizations musicales – terme emprunté au TALN pour
signifier la représentation séquentielle d’un contenu musical ou textuel – ont été
proposées.

L’échelle temporelle étant une caractéristique fondamentale en musique, les
tokenizations basées sur des tranches de temps segmentent la séquence musicale
en tranches de longueurs temporelles égales. Celles ci permettent notamment de
généraliser les piano rolls – une représentation matricielle de la musique – sous une
forme séquentielle.

Ce sont, en revanche, les tokenizations basées sur les événements qui se sont
largement répandues. Cela est notamment dû au nombre important de fichiers MIDI
disponibles aujourd’hui. Ces événements sont définis par le choix d’un alphabet et
d’une possible stratégie de groupement statistique ou par apprentissage. Le choix de
l’alphabet détermine les éléments de la partition à représenter ainsi que leur forme
de représentation. Par exemple, la tokenization basée sur le protocole MIDI définit
une note comme étant une suite d’événements de notes appuyées puis relâchées, et
le temps est représenté via des écarts temporels relatifs entre ces événements. Au
contraire, REMI encode le temps de façon absolue de manière similaire aux partitions,
comme étant un temps musical au sein d’une mesure.

Le choix d’événements pour encoder la musique introduit nécessairement une
séquentialité artificielle. En effet, une note, caractérisée par plusieurs uniques pro-
priétés, doit être encodée comme une suite d’événements, et la polyphonie doit
être approximée sous la forme d’une séquence unidimensionnelle. Pour palier à la
séquentialité au sein d’une même note, des tokens composites permettent de regrouper
toutes les caractéristiques d’une même note au sein d’un même token.

Ces tokens peuvent alors être plongés dans un espace, via des embeddings qui
peuvent être construits ou appris par un modèle, et utilisés comme entrée d’un
modèle traitant des données représentées sous forme de séquence de tokens.
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Chapitre 5 – Modèles adaptés du TALN pour la musique symbolique

Avant l’essor de l’apprentissage profond, des modèles dérivés du TALN ont déjà été
utilisés pour traiter des informations musicales symboliques tels que les grammaires
génératives, les chaînes de Markov cachées ou les modèles récurrents. En revanche,
les performances du modèle Transformeur dans des tâches de TALN ont par la suite
grandement motivé l’adaptation de ce modèle en MIR.

Les modèles utilisés en MIR basés sur le Transformeur peuvent être vus sous
plusieurs prismes, notamment leur paradigme d’entraînement, leur architecture ou
bien les adaptations de ses mécanismes internes pour la musique.

Le paradigme d’entraînement – de bout-en-bout (end-to-end) ou via un pré-
entraînement suivi d’un réglage fin (fine-tuning), tels que BERT ou GPT– peut donner
lieu un modèle spécifique à une tâche particulière, ou bien un modèle « comprenant »
la musique pouvant être ensuite spécialisé sur une tâche.

L’architecture du modèle comprend notamment des encodeurs, décodeurs, ou
bien une association encodeur-décodeur. L’architecture basée sur uniquement des
encodeurs est généralement privilégiée pour des tâches d’analyse. Les deux autres
architectures permettent de réaliser des tâches allant de l’analyse harmonique à
des tâches de génération automatique de musique. Enfin, les modèles multimodaux
permettent d’intégrer d’autres types de données, tels que du texte ou de la vidéo,
et les mettre en relation avec la musique. Ce cadre permet également d’utiliser la
puissance des grands modèles de langage textuels (Large Language Model) pour traiter
des données musicales symboliques encodées sous forme de texte, via notamment la
Notation ABC.

Pour répondre aux particularités de la musique, plusieurs ajustements des méca-
nismes internes du Transformeur ont été proposés. Par exemple, la couche d’enco-
dage de la position (positional encoding) a notamment été étudiée de sorte à prendre
en compte la polyphonie ou les relations entre les attributs musicaux. Le mécanisme
d’attention a également pu être adapté, par exemple en prenant en compte la répétiti-
vité en musique. Enfin, dans le cadre des modèles pré-entraînés, différentes tâches
de pré-entraînement spécifiquement musicales ont été utilisées tels que l’analyse
harmonique.

Partie II: Contributions techniques

La seconde partie de cette thèse expose les contributions techniques, en suivant cette
organisation en trois axes.
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Chapitre 6 – Expressivité des représentations séquentielles de la
musique

Dans ce chapitre, nous nous intéressons à l’impact de l’expressivité d’une tokenization
basée sur des événements dans les performances de modèles d’analyse automatique.
Tout d’abord, nous étudions l’expressivité de l’alphabet, avec le choix de tokens
encodant les intervalles musicaux au lieu des hauteurs absolues des notes. Nous
étudions ensuite l’expressivité d’un mécanisme de groupement, Byte-Pair Encoding
(BPE), appliqué à différents niveaux de polyphonie.

Tokenization basée sur les intervalles musicaux – On mémorise généralement une
mélodie à travers son contour mélodique plutôt qu’à partir de ses hauteurs de note
exactes. Pourtant, les tokenizations basées sur les événements utilisent le plus souvent
des tokens <Pitch> indiquant la hauteur absolue de la note. Nous avons alors exploré
l’impact de l’utilisation d’une tokenization basée sur des tokens d’intervalles. Nous
proposons notamment une méthode formelle pour construire de telles tokenizations,
en se basant sur le choix de l’encodage des intervalles entre notes successives ou
simultanées, et le choix d’un sous-ensemble de notes de référence.

Nos résultats montrent qu’une telle tokenization peut améliorer les performances
de modèles sur diverses tâches, et améliorer l’explicabilité du modèle, bien que les
choix permettant de construire la tokenization jouent un rôle important. En dépit de
ces résultats, nous avons restreint notre étude à des modèles légers pour isoler l’effet
de la tokenization. Des modèles plus profonds pourraient toutefois être capables
d’apprendre eux-mêmes la notion d’intervalle.

Analyse de BPE pour la musique monophonique et polyphonique – Byte-Pair
Encoding (BPE) est un algorithme permettant de regrouper statistiquement les paires
de tokens les plus récurrents. Il est notamment utilisé en TALN pour construire des
sous-mots (subwords) en enrichissant le vocabulaire initial de super-tokens. Notre
étude se focalise plus spécifiquement sur l’analyse des super-tokens musicaux et l’effet
de BPE sur une tâche de segmentation en phrase musicale.

Nous observons alors que les super-tokens musicaux appris par BPE ont des
caractéristiques différentes par rapport au langage naturel, et diffèrent selon le niveau
de polyphonie considéré. Par ailleurs, ceux-ci peuvent être interprétés musicalement,
et ont une place particulière vis-à-vis des positions de fin de phrase musicale. Des
résultats quantitatifs sur cette tâche de détection de fin de phrase musicale montrent
alors que le nombre de regroupement via BPE impacte la performance d’un modèle,
selon le niveau de polyphonicité des données. Cet hyper-paramètre sensible et le
temps alloué à l’entraînement d’un tokenizer via BPE peut potentiellement dissuader
son utilisation en pratique, au profit d’une tokenization plus commune.
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Chapitre 7 – Une exploration des mécanismes de modèles basés sur
l’attention

Bien que les modèles de TALN appliqués en MIR peuvent aboutir à des performances
satisfaisantes sur certaines tâches, leur fonctionnement interne reste souvent inex-
ploré. Nous nous focalisons alors l’explicabilité d’un modèle entraîné sur une tâche
d’analyse harmonique fonctionnelle, à travers l’étude de son mécanisme d’attention.

Analyse harmonique fonctionnelle – L’analyse harmonique fonctionnelle est une
tâche pouvant être modélisée comme une tâche de classification de token. Ces labels
sont alors des annotations d’harmonie, tels que la tonalité, le degré de l’accord
ou encore son renversement. Nous proposons alors un modèle Transformeur dont
l’architecture est basée sur des encodeurs, prenant en entrée une tokenization en
tranches de temps, et entraîné pour réaliser cette tâche de multi-classification. Ce
modèle est entraîné de bout-en-bout et obtient des performances proches de l’état de
l’art.

Analyse du méchanisme d’attention – Nous nous intéressons plus particulièrement
au comportement du mécanisme d’attention inhérent au modèle Transformeur que
nous avons proposé. Pour cela, une première analyse se focalise sur les coefficients
d’attention bruts. Nous modélisons la portée de l’attention comme étant le nombre de
tokens précédents ou suivants auxquels le modèle « porte attention ». En analysant
cette quantité, le modèle accorde plus d’attention au futur qu’au passé.

Nous étudions ensuite la contribution des têtes d’attention dans la sous-tâche de
détection de tonalité en utilisant un outil nommé Layer-wise Relevance Propagation.
En TALN, cet outil a notamment servi à améliorer l’explicabilité des modèles textuels,
en attribuant une importance à chaque token dans le résultat généré pour une tâche
donnée. Nous observons alors que, pour un modèle entraîné uniquement sur cette
sous-tâche, des têtes d’attentions différentes sont spécialisées sur différentes tonalités.
Par ailleurs, il apparaît qu’en dépit de l’entraînement sur une sous-tâche de détection
de tonalité, le comportement des têtes d’attention est également corrélé avec plus ou
moins d’importance à d’autres éléments d’analyse harmonique.

Enfin, l’analyse des contributions des têtes d’attention dans un modèle unique-
ment pré-entraîné ne révèle pas de présence claire d’informations liées à l’analyse
harmonique. Autrement dit, contrairement à la grammaire qui apparaît dans des mo-
dèles pré-entraînées en TALN, le concept d’harmonie fonctionnelle semble être trop
abstrait pour être appris de façon implicite à travers une tâche de pré-entraînement
générique, et n’est alors pas capturé par notre protocole.
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Chapitre 8 – Un cas d’adaptation des méthodes de TALN pour une
tâche de génération de musique

Enfin, nous proposons une tâche de ré-orchestration. Nous développons pour cela
un modèle dérivé du TALN entraîné sur cette tâche de génération automatique de
musique symbolique.

Ré-orchestration – Nous formalisons la tâche de ré-orchestration comme étant
une tâche de transfert de style instrumental et textural conservant la mélodie. En
d’autres termes, nous nous concentrons sur une tâche visant à transformer une pièce
musicale de référence en changeant son instrumentation et sa texture. Aujourd’hui,
les modèles de génération automatique de musique symbolique réalisent cette tâche
en considérant le plus souvent des ensembles d’instruments fixes, et outrepassent la
fidélité mélodique entre la pièce d’origine et ré-orchestrée.

Meteor – Nous proposons alors Meteor, un auto-encoder variationnel basé sur un
modèle Transformeur entraîné sur cette tâche de ré-orchestration. Celui-ci permet
une contrôlabilité texturale et instrumentale, et assurant une fidélité mélodique.
Son architecture est basée sur MuseMorphose, originellement entraîné sur une tâche
de transfert de style pour le piano. Meteor réalise une contrôlabilité de texture
au niveau des mesures via un conditionnement de son espace latent. Le modèle
réalise les contrôlabilités texturales et instrumentales et assure une fidélité mélodique
via des tokens de contrainte. Au-delà de la ré-orchestration, ce modèle peut être
converti en un modèle d’orchestration à partir de lead sheet (mélodie et accords) sans
entraînement supplémentaire.

Nous évaluons alors le modèle via des métriques quantitatives, montrant
que notre modèle atteint des performances de l’état-de-l’art sur la tâche de ré-
orchestration. Nous montrons également que la fidélité mélodique peut nuire à
la contrôlabilité et que le choix de l’instrumentation peut impacter les performances.
Une étude utilisateur est ensuite réalisée, montrant également que Meteor est pré-
féré par rapport à deux autres modèles sur la tâche de ré-orchestration, et atteint
des résultats similaires à l’état de l’art sur la tâche d’orchestration de lead sheet. À
l’instar d’autres modèles de génération, Meteor présente toutefois des limites en ce
qui concerne la jouabilité de la musique produite, qui n’est pas toujours garantie.

Chapitre 9 – Discussions, perspectives et conclusions

En dépit des performances atteintes empiriquement par les méthodes de TALN
traitant des données musicales symboliques, leur application directe soulève des
interrogations. Par exemple, la quantité de données textuelles est bien supérieure
à celle des données musicales symboliques, alors que les modèles Transformeurs
sont conçus pour être entraînés sur des corpus de grande taille. En revanche, les
pratiques dans le domaine du TALN peuvent inspirer de nouvelles recherches en
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MIR, notamment par le développement de modèles plus légers ou explicables, ou la
mise en place de benchmarks pour l’évaluation et la comparaison de modèles.

Ainsi, nous proposons dans cette thèse une structuration d’une piste de recherche en
MIR basée sur trois éléments: la tâche visée, la représentation de la musique utilisée,
et le modèle implémenté. L’identification et la justification de ces trois niveaux
sont essentielles pour évaluer la pertinence d’une contribution en MIR. Aussi, de la
même manière que les modèles à bruit statistique (diffusion models) – initialement
développés pour des images – se développent de plus en plus en musique symbolique,
les outils de TALN doivent avant être considérés une boîte à outils dont le MIR peut
s’inspirer. Autrement dit, la recherche en MIR devrait avant tout être motivée par
des problématiques musicales, plus que par l’application directe, systématique ou
forcée d’outils issus de domaines mis en parallèle avec la musique.
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